2025-09-22 16:56:48 +00:00

30 lines
892 B
Python

import numpy as np
import tritonclient.http as httpclient
# Connect to Triton
client = httpclient.InferenceServerClient(url="localhost:8089")
# Prepare dummy input image (e.g., normalized float32 [0,1])
input_data = np.random.rand(1, 3, 160, 160).astype(np.float32)
# Create Triton input
input_tensor = httpclient.InferInput("input", input_data.shape, "FP32")
input_tensor.set_data_from_numpy(input_data)
# Declare expected outputs
output_names = ["embedding", "bbox", "score", "landmarks"]
output_tensors = [httpclient.InferRequestedOutput(name) for name in output_names]
# Send inference request
response = client.infer(
model_name="face_recognition",
inputs=[input_tensor],
outputs=output_tensors
)
# Parse and print outputs
for name in output_names:
output = response.as_numpy(name)
print(f"{name}: shape={output.shape}, dtype={output.dtype}")
print(output)