Add face detection models with git lfs
This commit is contained in:
parent
3dcf33cca3
commit
74bbced307
3
.gitattributes
vendored
Normal file
3
.gitattributes
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||
*.plan filter=lfs diff=lfs merge=lfs -text
|
||||
*.pbtxt filter=lfs diff=lfs merge=lfs -text
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,3 +1,5 @@
|
||||
build*
|
||||
CMakeLists.txt.user
|
||||
|
||||
__pycache__/
|
||||
*.pyc
|
||||
|
||||
BIN
face_post_process/face_allignment/1/model.onnx
(Stored with Git LFS)
Normal file
BIN
face_post_process/face_allignment/1/model.onnx
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
face_post_process/face_allignment/1/model.plan
(Stored with Git LFS)
Normal file
BIN
face_post_process/face_allignment/1/model.plan
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
face_post_process/face_allignment/config.pbtxt
(Stored with Git LFS)
Normal file
BIN
face_post_process/face_allignment/config.pbtxt
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
face_post_process/face_embeding/1/model.onnx
(Stored with Git LFS)
Normal file
BIN
face_post_process/face_embeding/1/model.onnx
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
face_post_process/face_embeding/1/model.plan
(Stored with Git LFS)
Normal file
BIN
face_post_process/face_embeding/1/model.plan
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
face_post_process/face_embeding/config.pbtxt
(Stored with Git LFS)
Normal file
BIN
face_post_process/face_embeding/config.pbtxt
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
face_post_process/face_recognition/config.pbtxt
(Stored with Git LFS)
Normal file
BIN
face_post_process/face_recognition/config.pbtxt
(Stored with Git LFS)
Normal file
Binary file not shown.
203
face_post_process/face_warp/1/model.py
Normal file
203
face_post_process/face_warp/1/model.py
Normal file
@ -0,0 +1,203 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Triton Python Backend: Face Warp / Alignment
|
||||
|
||||
This model warps each input face crop from 160x160 to a canonical 112x112
|
||||
aligned face using 5 facial keypoints. Intended to bridge your
|
||||
`face_allignment` → `face_embeding` pipeline.
|
||||
|
||||
Inputs (batched):
|
||||
input : FP32 [N,3,160,160] NCHW face crops.
|
||||
landmarks : FP32 [N,5,2] pixel coords (x,y) in 160x160 image space.
|
||||
scale : FP32 [N] or [1] (optional) per-sample zoom; >1 zooms in.
|
||||
|
||||
Outputs:
|
||||
output : FP32 [N,3,112,112] NCHW aligned faces.
|
||||
# matrix : FP32 [N,2,3] optional affine matrices (commented out below).
|
||||
|
||||
Notes:
|
||||
* Color order is preserved; no channel swapping.
|
||||
* Value range is preserved; if your downstream embedding model expects
|
||||
normalization (mean/std), perform that there (or in an ensemble step).
|
||||
* The canonical 5-point template is scaled from a 96x112 source template
|
||||
to 112x112 output width/height; matches typical ArcFace preprocessing.
|
||||
"""
|
||||
|
||||
import os
|
||||
import json
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
import triton_python_backend_utils as pb_utils
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
# Utility: build canonical destination template once and reuse #
|
||||
# --------------------------------------------------------------------------- #
|
||||
def _canonical_template(output_w: int, output_h: int, scale_factor: float) -> np.ndarray:
|
||||
"""
|
||||
Compute canonical destination 5-point template scaled to the desired output
|
||||
size and zoomed by `scale_factor`.
|
||||
|
||||
Returns:
|
||||
(5,2) float32 array of (x,y) coords in output image space.
|
||||
"""
|
||||
# Canonical template as provided (nominal crop 96x112).
|
||||
# Order: left_eye, right_eye, nose, left_mouth, right_mouth
|
||||
reference_points = np.array(
|
||||
[
|
||||
[30.2946, 51.6963],
|
||||
[65.5318, 51.5014],
|
||||
[48.0252, 71.7366],
|
||||
[33.5493, 92.3655],
|
||||
[62.7299, 92.2041],
|
||||
],
|
||||
dtype=np.float32,
|
||||
)
|
||||
default_crop_size = np.array([96.0, 112.0], dtype=np.float32) # (w, h)
|
||||
|
||||
# Scale to target output size
|
||||
scale_xy = np.array([output_w, output_h], dtype=np.float32) / default_crop_size
|
||||
dst_kps = reference_points * scale_xy
|
||||
|
||||
# Apply zoom about the center
|
||||
center = dst_kps.mean(axis=0, keepdims=True)
|
||||
dst_kps = (dst_kps - center) * scale_factor + center
|
||||
return dst_kps.astype(np.float32)
|
||||
|
||||
|
||||
def _estimate_affine(src_kps: np.ndarray, dst_kps: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Estimate 2x3 affine transformation mapping src_kps -> dst_kps.
|
||||
|
||||
Uses cv2.estimateAffinePartial2D with LMEDS for robustness.
|
||||
"""
|
||||
# cv2 expects shape (N,2). Ensure contiguous float32.
|
||||
M, _ = cv2.estimateAffinePartial2D(src_kps, dst_kps, method=cv2.LMEDS)
|
||||
if M is None:
|
||||
# Fallback: identity with translation to keep image valid.
|
||||
M = np.array([[1.0, 0.0, 0.0],
|
||||
[0.0, 1.0, 0.0]], dtype=np.float32)
|
||||
return M.astype(np.float32)
|
||||
|
||||
|
||||
def _warp_image_nchw(img_chw: np.ndarray, M: np.ndarray, out_w: int, out_h: int) -> np.ndarray:
|
||||
"""
|
||||
Warp a single NCHW FP32 image using affine matrix M into out size W,H.
|
||||
|
||||
Args:
|
||||
img_chw: (3,H,W) float32
|
||||
M: (2,3) float32
|
||||
out_w, out_h: ints
|
||||
|
||||
Returns:
|
||||
(3,out_h,out_w) float32 aligned image.
|
||||
"""
|
||||
# Convert to HWC for cv2.warpAffine (expects HxW xC, BGR/RGB agnostic)
|
||||
img_hwc = np.transpose(img_chw, (1, 2, 0)) # H,W,C
|
||||
warped = cv2.warpAffine(
|
||||
img_hwc,
|
||||
M,
|
||||
dsize=(out_w, out_h), # (width, height)
|
||||
flags=cv2.INTER_CUBIC,
|
||||
borderMode=cv2.BORDER_REPLICATE,
|
||||
)
|
||||
# Back to NCHW
|
||||
warped_chw = np.transpose(warped, (2, 0, 1))
|
||||
return warped_chw.astype(np.float32)
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
"""
|
||||
Triton entrypoint class. One instance per model instance.
|
||||
"""
|
||||
|
||||
def initialize(self, args):
|
||||
"""
|
||||
Called once when the model is loaded.
|
||||
"""
|
||||
# Parse model config to get default scale factor (if provided).
|
||||
model_config = json.loads(args['model_config'])
|
||||
params = model_config.get('parameters', {})
|
||||
self.default_scale = float(params.get('scale_factor', {}).get('string_value', '1.0'))
|
||||
|
||||
# Output dimensions from config; we assume fixed 112x112.
|
||||
# (We could parse from config but we'll hardcode to match pbtxt.)
|
||||
self.out_w = 112
|
||||
self.out_h = 112
|
||||
|
||||
# Precompute base canonical template for default scale (will adjust per‑sample if needed).
|
||||
self.base_template = _canonical_template(self.out_w, self.out_h, 1.0)
|
||||
self.embeding_model_name = "face_embeding"
|
||||
|
||||
def execute(self, requests):
|
||||
responses = []
|
||||
|
||||
for request in requests:
|
||||
# ---- Fetch tensors ----
|
||||
in_img_tensor = pb_utils.get_input_tensor_by_name(request, "input")
|
||||
in_lmk_tensor = pb_utils.get_input_tensor_by_name(request, "landmarks")
|
||||
score_tensor = pb_utils.get_input_tensor_by_name(request, "score")
|
||||
|
||||
|
||||
imgs = in_img_tensor.as_numpy() # [B,3,160,160]
|
||||
lmks = in_lmk_tensor.as_numpy() # [B,5,2]
|
||||
scores = score_tensor.as_numpy() # [B,1]
|
||||
|
||||
|
||||
|
||||
# Ensure batch dimension
|
||||
if imgs.ndim == 3:
|
||||
imgs = imgs[np.newaxis, ...]
|
||||
if lmks.ndim == 2:
|
||||
lmks = lmks[np.newaxis, ...]
|
||||
if scores.ndim == 1:
|
||||
scores = scores[np.newaxis, ...]
|
||||
|
||||
batch_size = imgs.shape[0]
|
||||
aligned_imgs = []
|
||||
valid_indices = []
|
||||
|
||||
# Allocate output buffer
|
||||
embedding_out = np.zeros((batch_size, 512), dtype=np.float32)
|
||||
embedding_tensor_list = [pb_utils.Tensor("output", embedding_out)]
|
||||
|
||||
for i in range(batch_size):
|
||||
score = max(0.0, scores[i][0])
|
||||
# score = scores[i][0]
|
||||
if score < 0.9:
|
||||
continue # Skip, leave embedding as zero
|
||||
src_img = imgs[i]
|
||||
src_kps = lmks[i].astype(np.float32)
|
||||
|
||||
# Align
|
||||
dst_kps = self.base_template
|
||||
M = _estimate_affine(src_kps, dst_kps)
|
||||
warped = _warp_image_nchw(src_img, M, self.out_w, self.out_h)
|
||||
|
||||
aligned_imgs.append(warped)
|
||||
valid_indices.append(i)
|
||||
|
||||
# Only call embeding model if there are valid samples
|
||||
if aligned_imgs:
|
||||
aligned_batch = np.stack(aligned_imgs) # shape: [valid_N, 3, 112, 112]
|
||||
|
||||
infer_input = pb_utils.Tensor("input", aligned_batch)
|
||||
inference_request = pb_utils.InferenceRequest(
|
||||
model_name=self.embeding_model_name,
|
||||
requested_output_names=["output"],
|
||||
inputs=[infer_input]
|
||||
)
|
||||
inference_response = inference_request.exec()
|
||||
|
||||
embedding_tensor_list = inference_response.output_tensors()
|
||||
|
||||
responses.append(pb_utils.InferenceResponse(output_tensors=embedding_tensor_list))
|
||||
|
||||
return responses
|
||||
|
||||
def finalize(self):
|
||||
"""
|
||||
Called when the model is being unloaded. Nothing to clean up here.
|
||||
"""
|
||||
return
|
||||
BIN
face_post_process/face_warp/config.pbtxt
(Stored with Git LFS)
Normal file
BIN
face_post_process/face_warp/config.pbtxt
(Stored with Git LFS)
Normal file
Binary file not shown.
2
face_post_process/face_warp/requirements.txt
Normal file
2
face_post_process/face_warp/requirements.txt
Normal file
@ -0,0 +1,2 @@
|
||||
opencv-python-headless==4.10.0.84
|
||||
numpy==1.26.4
|
||||
BIN
face_post_process/shahab.jpg
Normal file
BIN
face_post_process/shahab.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 116 KiB |
29
face_post_process/test.py
Normal file
29
face_post_process/test.py
Normal file
@ -0,0 +1,29 @@
|
||||
import numpy as np
|
||||
import tritonclient.http as httpclient
|
||||
|
||||
# Connect to Triton
|
||||
client = httpclient.InferenceServerClient(url="localhost:8089")
|
||||
|
||||
# Prepare dummy input image (e.g., normalized float32 [0,1])
|
||||
input_data = np.random.rand(1, 3, 160, 160).astype(np.float32)
|
||||
|
||||
# Create Triton input
|
||||
input_tensor = httpclient.InferInput("input", input_data.shape, "FP32")
|
||||
input_tensor.set_data_from_numpy(input_data)
|
||||
|
||||
# Declare expected outputs
|
||||
output_names = ["embedding", "bbox", "score", "landmarks"]
|
||||
output_tensors = [httpclient.InferRequestedOutput(name) for name in output_names]
|
||||
|
||||
# Send inference request
|
||||
response = client.infer(
|
||||
model_name="face_recognition",
|
||||
inputs=[input_tensor],
|
||||
outputs=output_tensors
|
||||
)
|
||||
|
||||
# Parse and print outputs
|
||||
for name in output_names:
|
||||
output = response.as_numpy(name)
|
||||
print(f"{name}: shape={output.shape}, dtype={output.dtype}")
|
||||
print(output)
|
||||
51
face_post_process/test2.py
Normal file
51
face_post_process/test2.py
Normal file
@ -0,0 +1,51 @@
|
||||
import numpy as np
|
||||
import tritonclient.http as httpclient
|
||||
import cv2 # or use PIL.Image if preferred
|
||||
from pathlib import Path
|
||||
|
||||
# Path to current .py file
|
||||
current_file = Path(__file__)
|
||||
current_dir = current_file.parent.resolve()
|
||||
|
||||
# -----------------------------
|
||||
# Load JPEG and preprocess
|
||||
# -----------------------------
|
||||
image_path = current_dir / "shahab.jpg" # path to your JPEG file
|
||||
img = cv2.imread(image_path) # BGR, shape: (H, W, 3)
|
||||
img = cv2.resize(img, (160, 160)) # resize to 160x160
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # convert to RGB
|
||||
img = img.astype(np.float32) / 255.0 # normalize to [0, 1]
|
||||
|
||||
# Change to NCHW (3, 160, 160)
|
||||
img_chw = np.transpose(img, (2, 0, 1))
|
||||
|
||||
# Add batch dim: (1, 3, 160, 160)
|
||||
input_data = img_chw[np.newaxis, :]
|
||||
|
||||
# -----------------------------
|
||||
# Prepare Triton HTTP client
|
||||
# -----------------------------
|
||||
client = httpclient.InferenceServerClient(url="localhost:9000")
|
||||
|
||||
# Prepare input tensor
|
||||
input_tensor = httpclient.InferInput("input", input_data.shape, "FP32")
|
||||
input_tensor.set_data_from_numpy(input_data)
|
||||
|
||||
# Prepare expected outputs
|
||||
output_names = ["embedding", "bbox", "score", "landmarks"]
|
||||
output_tensors = [httpclient.InferRequestedOutput(name) for name in output_names]
|
||||
|
||||
# Send inference request
|
||||
response = client.infer(
|
||||
model_name="face_recognition",
|
||||
inputs=[input_tensor],
|
||||
outputs=output_tensors
|
||||
)
|
||||
|
||||
# -----------------------------
|
||||
# Print outputs
|
||||
# -----------------------------
|
||||
for name in output_names:
|
||||
output = response.as_numpy(name)
|
||||
print(f"{name}: shape={output.shape}, dtype={output.dtype}")
|
||||
print(output)
|
||||
Loading…
x
Reference in New Issue
Block a user