kaldifeat/kaldifeat/python/csrc/feature-plp.cc
Fangjun Kuang 94a567c638
Change how options are displayed (#62)
* Change the way how FrameExtractionOptions is displayed

* small fixes

* Change the way how MelBankOptions is displayed

* Change the way how SpectrogramOptions is displayed

* Change the way how FbankOptions is displayed

* Change the way how MfccOptions is displayed

* Change the way how PlpOptions is displayed

* Export num_frames

* release v1.22
2022-12-03 13:37:55 +08:00

110 lines
4.5 KiB
C++

// kaldifeat/python/csrc/feature-plp.cc
//
// Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
#include "kaldifeat/python/csrc/feature-plp.h"
#include <memory>
#include <string>
#include "kaldifeat/csrc/feature-plp.h"
#include "kaldifeat/python/csrc/utils.h"
namespace kaldifeat {
void PybindPlpOptions(py::module &m) {
using PyClass = PlpOptions;
py::class_<PyClass>(m, "PlpOptions")
.def(py::init<>())
.def(py::init([](const MelBanksOptions &mel_opts,
const FrameExtractionOptions &frame_opts =
FrameExtractionOptions(),
int32_t lpc_order = 12, int32_t num_ceps = 13,
bool use_energy = true, float energy_floor = 0.0,
bool raw_energy = true, float compress_factor = 0.33333,
int32_t cepstral_lifter = 22, float cepstral_scale = 1.0,
bool htk_compat = false,
py::object device =
py::str("cpu")) -> std::unique_ptr<PlpOptions> {
auto opts = std::make_unique<PlpOptions>();
opts->frame_opts = frame_opts;
opts->mel_opts = mel_opts;
opts->lpc_order = lpc_order;
opts->num_ceps = num_ceps;
opts->use_energy = use_energy;
opts->energy_floor = energy_floor;
opts->raw_energy = raw_energy;
opts->compress_factor = compress_factor;
opts->cepstral_lifter = cepstral_lifter;
opts->cepstral_scale = cepstral_scale;
opts->htk_compat = htk_compat;
std::string s = static_cast<py::str>(device);
opts->device = torch::Device(s);
return opts;
}),
py::arg("mel_opts"),
py::arg("frame_opts") = FrameExtractionOptions(),
py::arg("lpc_order") = 12, py::arg("num_ceps") = 13,
py::arg("use_energy") = true, py::arg("energy_floor") = 0.0,
py::arg("raw_energy") = true, py::arg("compress_factor") = 0.33333,
py::arg("cepstral_lifter") = 22, py::arg("cepstral_scale") = 1.0,
py::arg("htk_compat") = false, py::arg("device") = py::str("cpu"))
.def_readwrite("frame_opts", &PyClass::frame_opts)
.def_readwrite("mel_opts", &PyClass::mel_opts)
.def_readwrite("lpc_order", &PyClass::lpc_order)
.def_readwrite("num_ceps", &PyClass::num_ceps)
.def_readwrite("use_energy", &PyClass::use_energy)
.def_readwrite("energy_floor", &PyClass::energy_floor)
.def_readwrite("raw_energy", &PyClass::raw_energy)
.def_readwrite("compress_factor", &PyClass::compress_factor)
.def_readwrite("cepstral_lifter", &PyClass::cepstral_lifter)
.def_readwrite("cepstral_scale", &PyClass::cepstral_scale)
.def_readwrite("htk_compat", &PyClass::htk_compat)
.def_property(
"device",
[](const PyClass &self) -> py::object {
py::object ans = py::module_::import("torch").attr("device");
return ans(self.device.str());
},
[](PyClass &self, py::object obj) -> void {
std::string s = static_cast<py::str>(obj);
self.device = torch::Device(s);
})
.def("__str__",
[](const PyClass &self) -> std::string { return self.ToString(); })
.def("as_dict",
[](const PyClass &self) -> py::dict { return AsDict(self); })
.def_static(
"from_dict",
[](py::dict dict) -> PyClass { return PlpOptionsFromDict(dict); })
.def(py::pickle(
[](const PyClass &self) -> py::dict { return AsDict(self); },
[](py::dict dict) -> PyClass { return PlpOptionsFromDict(dict); }));
}
static void PybindPlp(py::module &m) {
using PyClass = Plp;
py::class_<PyClass>(m, "Plp")
.def(py::init<const PlpOptions &>(), py::arg("opts"))
.def("dim", &PyClass::Dim)
.def_property_readonly("options", &PyClass::GetOptions)
.def("compute_features", &PyClass::ComputeFeatures, py::arg("wave"),
py::arg("vtln_warp"), py::call_guard<py::gil_scoped_release>())
.def(py::pickle(
[](const PyClass &self) -> py::dict {
return AsDict(self.GetOptions());
},
[](py::dict dict) -> std::unique_ptr<PyClass> {
return std::make_unique<PyClass>(PlpOptionsFromDict(dict));
}));
}
void PybindFeaturePlp(py::module &m) {
PybindPlpOptions(m);
PybindPlp(m);
}
} // namespace kaldifeat