mirror of
https://github.com/csukuangfj/kaldifeat.git
synced 2025-08-09 10:02:20 +00:00
Add documentation.
This commit is contained in:
parent
361ede24c1
commit
dbf5dcaed9
38
README.md
38
README.md
@ -4,20 +4,36 @@ Wrap kaldi's feature computations to Python with PyTorch support.
|
||||
|
||||
# Installation
|
||||
|
||||
`kaldifeat` can be installed by
|
||||
## From PyPi with pip
|
||||
|
||||
If you install `kaldifeat` using `pip`, it will also install
|
||||
PyTorch 1.8.1. If this is not what you want, please install `kaldifeat`
|
||||
from source (see below).
|
||||
|
||||
```bash
|
||||
pip install kaldifeat
|
||||
```
|
||||
|
||||
# TODOs
|
||||
## From source
|
||||
|
||||
- [ ] Add Python interface
|
||||
- [ ] Support torch.device so that it can switch between CUDA and CPU
|
||||
- [ ] Add unit tests
|
||||
- [ ] Set up GitHub actions
|
||||
- [ ] Benchmark its speed and compare it with Kaldi
|
||||
- [ ] Support batch processing of multiple waves
|
||||
- [ ] Handle non-default parameters
|
||||
- [ ] Support MFCC and other features available in Kaldi
|
||||
- [ ] Publish it to PyPI
|
||||
The following are the commands to compile `kaldifeat` from source.
|
||||
We assume that you have installed `cmake` and PyTorch.
|
||||
cmake 3.11 is known to work. Other cmake versions may also work.
|
||||
PyTorch 1.8.1 is known to work. Other PyTorch versions may also work.
|
||||
|
||||
```bash
|
||||
mkdir /some/path
|
||||
git clone https://github.com/csukuangfj/kaldifeat.git
|
||||
cd kaldifeat
|
||||
python setup.py install
|
||||
```
|
||||
|
||||
To test whether `kaldifeat` was installed successfully, you can run:
|
||||
```
|
||||
python3 -c "import kaldifeat; print(kaldifeat.__version__)"
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
Please refer to <https://kaldifeat.readthedocs.io/en/latest/usage.html>
|
||||
for how to use `kaldifeat`.
|
||||
|
20
doc/Makefile
Normal file
20
doc/Makefile
Normal file
@ -0,0 +1,20 @@
|
||||
# Minimal makefile for Sphinx documentation
|
||||
#
|
||||
|
||||
# You can set these variables from the command line, and also
|
||||
# from the environment for the first two.
|
||||
SPHINXOPTS ?=
|
||||
SPHINXBUILD ?= sphinx-build
|
||||
SOURCEDIR = source
|
||||
BUILDDIR = build
|
||||
|
||||
# Put it first so that "make" without argument is like "make help".
|
||||
help:
|
||||
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
|
||||
.PHONY: help Makefile
|
||||
|
||||
# Catch-all target: route all unknown targets to Sphinx using the new
|
||||
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
|
||||
%: Makefile
|
||||
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
35
doc/make.bat
Normal file
35
doc/make.bat
Normal file
@ -0,0 +1,35 @@
|
||||
@ECHO OFF
|
||||
|
||||
pushd %~dp0
|
||||
|
||||
REM Command file for Sphinx documentation
|
||||
|
||||
if "%SPHINXBUILD%" == "" (
|
||||
set SPHINXBUILD=sphinx-build
|
||||
)
|
||||
set SOURCEDIR=source
|
||||
set BUILDDIR=build
|
||||
|
||||
if "%1" == "" goto help
|
||||
|
||||
%SPHINXBUILD% >NUL 2>NUL
|
||||
if errorlevel 9009 (
|
||||
echo.
|
||||
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
|
||||
echo.installed, then set the SPHINXBUILD environment variable to point
|
||||
echo.to the full path of the 'sphinx-build' executable. Alternatively you
|
||||
echo.may add the Sphinx directory to PATH.
|
||||
echo.
|
||||
echo.If you don't have Sphinx installed, grab it from
|
||||
echo.http://sphinx-doc.org/
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
goto end
|
||||
|
||||
:help
|
||||
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
|
||||
:end
|
||||
popd
|
6
doc/requirements.txt
Normal file
6
doc/requirements.txt
Normal file
@ -0,0 +1,6 @@
|
||||
dataclasses
|
||||
recommonmark
|
||||
sphinx
|
||||
sphinx-autodoc-typehints
|
||||
sphinx_rtd_theme
|
||||
sphinxcontrib-bibtex
|
72
doc/source/code/test_fbank.py
Executable file
72
doc/source/code/test_fbank.py
Executable file
@ -0,0 +1,72 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
import torch
|
||||
|
||||
import kaldifeat
|
||||
|
||||
|
||||
def read_wave(filename) -> torch.Tensor:
|
||||
"""Read a wave file and return it as a 1-D tensor.
|
||||
|
||||
Note:
|
||||
You don't need to scale it to [-32768, 32767].
|
||||
We use scaling here to follow the approach in Kaldi.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Filename of a sound file.
|
||||
Returns:
|
||||
Return a 1-D tensor containing audio samples.
|
||||
"""
|
||||
with sf.SoundFile(filename) as sf_desc:
|
||||
sampling_rate = sf_desc.samplerate
|
||||
assert sampling_rate == 16000
|
||||
data = sf_desc.read(dtype=np.float32, always_2d=False)
|
||||
data *= 32768
|
||||
return torch.from_numpy(data)
|
||||
|
||||
|
||||
def test_fbank():
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
wave0 = read_wave("test_data/test.wav")
|
||||
wave1 = read_wave("test_data/test2.wav")
|
||||
|
||||
wave0 = wave0.to(device)
|
||||
wave1 = wave1.to(device)
|
||||
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.frame_opts.dither = 0
|
||||
opts.device = device
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
# We can compute fbank features in batches
|
||||
features = fbank([wave0, wave1])
|
||||
assert isinstance(features, list), f"{type(features)}"
|
||||
assert len(features) == 2
|
||||
|
||||
# We can also compute fbank features for a single wave
|
||||
features0 = fbank(wave0)
|
||||
features1 = fbank(wave1)
|
||||
|
||||
assert torch.allclose(features[0], features0)
|
||||
assert torch.allclose(features[1], features1)
|
||||
|
||||
# To compute fbank features for only a specified frame
|
||||
audio_frames = fbank.convert_samples_to_frames(wave0)
|
||||
feature_frame_1 = fbank.compute(audio_frames[1])
|
||||
feature_frame_10 = fbank.compute(audio_frames[10])
|
||||
|
||||
assert torch.allclose(features0[1], feature_frame_1)
|
||||
assert torch.allclose(features0[10], feature_frame_10)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_fbank()
|
104
doc/source/conf.py
Normal file
104
doc/source/conf.py
Normal file
@ -0,0 +1,104 @@
|
||||
# Configuration file for the Sphinx documentation builder.
|
||||
#
|
||||
# This file only contains a selection of the most common options. For a full
|
||||
# list see the documentation:
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html
|
||||
|
||||
# -- Path setup --------------------------------------------------------------
|
||||
|
||||
# If extensions (or modules to document with autodoc) are in another directory,
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
#
|
||||
# import os
|
||||
import re
|
||||
|
||||
import sphinx_rtd_theme
|
||||
|
||||
# import sys
|
||||
# sys.path.insert(0, os.path.abspath('.'))
|
||||
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = "kaldifeat"
|
||||
copyright = "2021, Fangjun Kuang"
|
||||
author = "Fangjun Kuang"
|
||||
|
||||
|
||||
def get_version():
|
||||
cmake_file = "../../CMakeLists.txt"
|
||||
with open(cmake_file) as f:
|
||||
content = f.read()
|
||||
|
||||
version = re.search(r"set\(kaldifeat_VERSION (.*)\)", content).group(1)
|
||||
return version.strip('"')
|
||||
|
||||
|
||||
version = get_version()
|
||||
release = version
|
||||
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = [
|
||||
"recommonmark",
|
||||
"sphinx.ext.autodoc",
|
||||
"sphinx.ext.githubpages",
|
||||
"sphinx.ext.napoleon",
|
||||
"sphinx_autodoc_typehints",
|
||||
"sphinx_rtd_theme",
|
||||
]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ["_templates"]
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
# This pattern also affects html_static_path and html_extra_path.
|
||||
exclude_patterns = []
|
||||
|
||||
source_suffix = {
|
||||
".rst": "restructuredtext",
|
||||
".md": "markdown",
|
||||
}
|
||||
master_doc = "index"
|
||||
|
||||
|
||||
# -- Options for HTML output -------------------------------------------------
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
#
|
||||
html_theme = "sphinx_rtd_theme"
|
||||
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
|
||||
html_show_sourcelink = True
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ["_static"]
|
||||
|
||||
pygments_style = "sphinx"
|
||||
|
||||
numfig = True
|
||||
|
||||
html_context = {
|
||||
"display_github": True,
|
||||
"github_user": "csukuangfj",
|
||||
"github_repo": "kaldifeat",
|
||||
"github_version": "master",
|
||||
"conf_py_path": "/kaldifeat/docs/source/",
|
||||
}
|
||||
|
||||
# refer to
|
||||
# https://sphinx-rtd-theme.readthedocs.io/en/latest/configuring.html
|
||||
html_theme_options = {
|
||||
"logo_only": False,
|
||||
"display_version": True,
|
||||
"prev_next_buttons_location": "bottom",
|
||||
"style_external_links": True,
|
||||
}
|
24
doc/source/index.rst
Normal file
24
doc/source/index.rst
Normal file
@ -0,0 +1,24 @@
|
||||
.. kaldifeat documentation master file, created by
|
||||
sphinx-quickstart on Fri Jul 16 20:15:27 2021.
|
||||
You can adapt this file completely to your liking, but it should at least
|
||||
contain the root `toctree` directive.
|
||||
|
||||
kaldifeat
|
||||
=========
|
||||
|
||||
`kaldifeat <https://github.com/csukuangfj/kaldifeat>`_ implements
|
||||
feature extraction algorithms **compatible** with kaldi using PyTorch, supporting CUDA
|
||||
as well as autograd.
|
||||
|
||||
Currently, only fbank features are supported.
|
||||
It can produce the same feature output as ``compute-fbank-feats`` (from kaldi)
|
||||
when given the same options.
|
||||
|
||||
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:caption: Contents:
|
||||
|
||||
installation
|
||||
usage
|
54
doc/source/installation.rst
Normal file
54
doc/source/installation.rst
Normal file
@ -0,0 +1,54 @@
|
||||
Installation
|
||||
============
|
||||
|
||||
.. _from source:
|
||||
|
||||
Install kaldifeat from source
|
||||
-----------------------------
|
||||
|
||||
You have to install ``cmake`` and ``PyTorch`` first.
|
||||
|
||||
- ``cmake`` 3.11 is known to work. Other CMake versions may also work.
|
||||
- ``PyTorch`` 1.8.1 is known to work. Other PyTorch versions may also work.
|
||||
- Python >= 3.6
|
||||
|
||||
|
||||
The commands to install ``kaldifeat`` from source are:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
git clone https://github.com/csukuangfj/kaldifeat
|
||||
cd kaldifeat
|
||||
python3 setup.py install
|
||||
|
||||
To test that you have installed ``kaldifeat`` successfully, please run:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
python3 -c "import kaldifeat; print(kaldifeat.__version__)"
|
||||
|
||||
It should print the version, e.g., ``1.0``.
|
||||
|
||||
Install kaldifeat from PyPI
|
||||
---------------------------
|
||||
|
||||
The pre-built ``kaldifeat`` hosted on PyPI uses PyTorch 1.8.1.
|
||||
If you install ``kaldifeat`` using pip, it will replace your locally
|
||||
installed PyTorch automatically with PyTorch 1.8.1.
|
||||
|
||||
If you don't want this happen, please `Install kaldifeat from source`_.
|
||||
|
||||
The command to install ``kaldifeat`` from PyPI is:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
pip install kaldifeat
|
||||
|
||||
|
||||
To test that you have installed ``kaldifeat`` successfully, please run:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
python3 -c "import kaldifeat; print(kaldifeat.__version__)"
|
||||
|
||||
It should print the version, e.g., ``1.0``.
|
212
doc/source/usage.rst
Normal file
212
doc/source/usage.rst
Normal file
@ -0,0 +1,212 @@
|
||||
Usage
|
||||
=====
|
||||
|
||||
Let us first see the help message of kaldi's ``compute-fbank-feats``:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ compute-fbank-feats
|
||||
|
||||
Create Mel-filter bank (FBANK) feature files.
|
||||
Usage: compute-fbank-feats [options...] <wav-rspecifier> <feats-wspecifier>
|
||||
|
||||
Options:
|
||||
--allow-downsample : If true, allow the input waveform to have a higher frequency than the specified --sample-frequency (and we'll downsample). (bool, default = false)
|
||||
--allow-upsample : If true, allow the input waveform to have a lower frequency than the specified --sample-frequency (and we'll upsample). (bool, default = false)
|
||||
--blackman-coeff : Constant coefficient for generalized Blackman window. (float, default = 0.42)
|
||||
--channel : Channel to extract (-1 -> expect mono, 0 -> left, 1 -> right) (int, default = -1)
|
||||
--debug-mel : Print out debugging information for mel bin computation (bool, default = false)
|
||||
--dither : Dithering constant (0.0 means no dither). If you turn this off, you should set the --energy-floor option, e.g. to 1.0 or 0.1 (float, default = 1)
|
||||
--energy-floor : Floor on energy (absolute, not relative) in FBANK computation. Only makes a difference if --use-energy=true; only necessary if --dither=0.0. Suggested values: 0.1 or 1.0 (float, default = 0)
|
||||
--frame-length : Frame length in milliseconds (float, default = 25)
|
||||
--frame-shift : Frame shift in milliseconds (float, default = 10)
|
||||
--high-freq : High cutoff frequency for mel bins (if <= 0, offset from Nyquist) (float, default = 0)
|
||||
--htk-compat : If true, put energy last. Warning: not sufficient to get HTK compatible features (need to change other parameters). (bool, default = false)
|
||||
--low-freq : Low cutoff frequency for mel bins (float, default = 20)
|
||||
--max-feature-vectors : Memory optimization. If larger than 0, periodically remove feature vectors so that only this number of the latest feature vectors is retained. (int, default = -1)
|
||||
--min-duration : Minimum duration of segments to process (in seconds). (float, default = 0)
|
||||
--num-mel-bins : Number of triangular mel-frequency bins (int, default = 23)
|
||||
--output-format : Format of the output files [kaldi, htk] (string, default = "kaldi")
|
||||
--preemphasis-coefficient : Coefficient for use in signal preemphasis (float, default = 0.97)
|
||||
--raw-energy : If true, compute energy before preemphasis and windowing (bool, default = true)
|
||||
--remove-dc-offset : Subtract mean from waveform on each frame (bool, default = true)
|
||||
--round-to-power-of-two : If true, round window size to power of two by zero-padding input to FFT. (bool, default = true)
|
||||
--sample-frequency : Waveform data sample frequency (must match the waveform file, if specified there) (float, default = 16000)
|
||||
--snip-edges : If true, end effects will be handled by outputting only frames that completely fit in the file, and the number of frames depends on the frame-length. If false, the number of frames depends only on the frame-shift, and we reflect the data at the ends. (bool, default = true)
|
||||
--subtract-mean : Subtract mean of each feature file [CMS]; not recommended to do it this way. (bool, default = false)
|
||||
--use-energy : Add an extra dimension with energy to the FBANK output. (bool, default = false)
|
||||
--use-log-fbank : If true, produce log-filterbank, else produce linear. (bool, default = true)
|
||||
--use-power : If true, use power, else use magnitude. (bool, default = true)
|
||||
--utt2spk : Utterance to speaker-id map (if doing VTLN and you have warps per speaker) (string, default = "")
|
||||
--vtln-high : High inflection point in piecewise linear VTLN warping function (if negative, offset from high-mel-freq (float, default = -500)
|
||||
--vtln-low : Low inflection point in piecewise linear VTLN warping function (float, default = 100)
|
||||
--vtln-map : Map from utterance or speaker-id to vtln warp factor (rspecifier) (string, default = "")
|
||||
--vtln-warp : Vtln warp factor (only applicable if vtln-map not specified) (float, default = 1)
|
||||
--window-type : Type of window ("hamming"|"hanning"|"povey"|"rectangular"|"sine"|"blackmann") (string, default = "povey")
|
||||
--write-utt2dur : Wspecifier to write duration of each utterance in seconds, e.g. 'ark,t:utt2dur'. (string, default = "")
|
||||
|
||||
Standard options:
|
||||
--config : Configuration file to read (this option may be repeated) (string, default = "")
|
||||
--help : Print out usage message (bool, default = false)
|
||||
--print-args : Print the command line arguments (to stderr) (bool, default = true)
|
||||
--verbose : Verbose level (higher->more logging) (int, default = 0)
|
||||
|
||||
FbankOptions
|
||||
------------
|
||||
|
||||
``kaldifeat`` reuses the same options from kaldi's ``compute-fbank-feats``.
|
||||
|
||||
The following shows the default values of ``kaldifeat.FbankOptions``:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
>>> import kaldifeat
|
||||
>>> fbank_opts = kaldifeat.FbankOptions()
|
||||
>>> print(fbank_opts)
|
||||
frame_opts:
|
||||
samp_freq: 16000
|
||||
frame_shift_ms: 10
|
||||
frame_length_ms: 25
|
||||
dither: 1
|
||||
preemph_coeff: 0.97
|
||||
remove_dc_offset: 1
|
||||
window_type: povey
|
||||
round_to_power_of_two: 1
|
||||
blackman_coeff: 0.42
|
||||
snip_edges: 1
|
||||
|
||||
|
||||
mel_opts:
|
||||
num_bins: 23
|
||||
low_freq: 20
|
||||
high_freq: 0
|
||||
vtln_low: 100
|
||||
vtln_high: -500
|
||||
debug_mel: 0
|
||||
htk_mode: 0
|
||||
|
||||
use_energy: 0
|
||||
energy_floor: 0
|
||||
raw_energy: 1
|
||||
htk_compat: 0
|
||||
use_log_fbank: 1
|
||||
use_power: 1
|
||||
device: cpu
|
||||
|
||||
It consists of three parts:
|
||||
|
||||
- ``frame_opts``
|
||||
|
||||
Options in this part are accessed by ``frame_opts.xxx``. That is, to access
|
||||
the sample rate, you use:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
>>> fbank_opts = kaldifeat.FbankOptions()
|
||||
>>> print(fbank_opts.frame_opts.samp_freq)
|
||||
16000.0
|
||||
|
||||
- ``mel_opts``
|
||||
|
||||
Options in this part are accessed by ``mel_opts.xxx``. That is, to access
|
||||
the number of mel bins, you use:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
>>> fbank_opts = kaldifeat.FbankOptions()
|
||||
>>> print(fbank_opts.mel_opts.num_bins)
|
||||
23
|
||||
|
||||
- fbank related
|
||||
|
||||
Options in this part are accessed directly. That is, to access the device
|
||||
field, you use:
|
||||
|
||||
.. code-block::
|
||||
|
||||
>>> print(fbank_opts.device)
|
||||
cpu
|
||||
>>> fbank_opts.device = 'cuda:0'
|
||||
>>> print(fbank_opts.device)
|
||||
cuda:0
|
||||
>>> import torch
|
||||
>>> fbank_opts.device = torch.device('cuda', 0)
|
||||
>>> print(fbank_opts.device)
|
||||
cuda:0
|
||||
|
||||
|
||||
|
||||
To change the sample rate to 8000, you can use:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
>>> fbank_opts = kaldifeat.FbankOptions()
|
||||
>>> print(fbank_opts.frame_opts.samp_freq)
|
||||
16000.0
|
||||
>>> fbank_opts.frame_opts.samp_freq = 8000
|
||||
>>> print(fbank_opts.frame_opts.samp_freq)
|
||||
8000.0
|
||||
|
||||
To change ``snip_edges`` to ``False``, you can use:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
>>> fbank_opts.frame_opts.snip_edges = False
|
||||
>>> print(fbank_opts.frame_opts.snip_edges)
|
||||
False
|
||||
|
||||
To change number of mel bins to 80, you can use:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
>>> print(fbank_opts.mel_opts.num_bins)
|
||||
23
|
||||
>>> fbank_opts.mel_opts.num_bins = 80
|
||||
>>> print(fbank_opts.mel_opts.num_bins)
|
||||
80
|
||||
|
||||
To change the device to ``cuda``, you can use:
|
||||
|
||||
|
||||
Fbank
|
||||
-----
|
||||
|
||||
The following shows how to use ``kaldifeat.Fbank`` to compute
|
||||
the fbank features of sound files.
|
||||
|
||||
First, let us generate two sound files using ``sox``:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
# generate a wav of two seconds, containing a sine-wave
|
||||
# swept from 300 Hz to 3300 Hz
|
||||
sox -n -r 16000 -b 16 test.wav synth 1.2 sine 300-3300
|
||||
|
||||
# another sound file with 0.5 seconds
|
||||
sox -n -r 16000 -b 16 test2.wav synth 0.5 sine 300-3300
|
||||
|
||||
.. hint::
|
||||
|
||||
You can find the above two files by visiting the following two links:
|
||||
|
||||
- `test.wav <https://github.com/csukuangfj/kaldifeat/blob/master/kaldifeat/python/tests/test_data/test.wav>`_
|
||||
- `test2.wav <https://github.com/csukuangfj/kaldifeat/blob/master/kaldifeat/python/tests/test_data/test2.wav>`_
|
||||
|
||||
The `following code <https://github.com/csukuangfj/kaldifeat/blob/master/kaldifeat/python/tests/test_fbank.py>`_
|
||||
shows the usage of ``kaldifeat.Fbank``.
|
||||
|
||||
It shows:
|
||||
|
||||
- How to read a sound file. Note that audio samples are scaled to the range [-32768, 32768].
|
||||
The intention is to produce the same output as kaldi. You don't need to scale it if
|
||||
you don't care about the compatibility with kaldi
|
||||
|
||||
- ``kaldifeat.Fbank`` supports CUDA as well as CPU
|
||||
|
||||
- ``kaldifeat.Fbank`` supports processing sound file in a batch as well as accepting
|
||||
a single sound file
|
||||
|
||||
|
||||
.. literalinclude:: ./code/test_fbank.py
|
||||
:caption: Demo of ``kaldifeat.Fbank``
|
||||
:language: python
|
Loading…
x
Reference in New Issue
Block a user