Add OnlineMfcc Python APIs.

This commit is contained in:
Fangjun Kuang 2022-04-02 20:18:47 +08:00
parent e59d05a45a
commit 8f03b654fc
6 changed files with 100 additions and 13 deletions

View File

@ -66,8 +66,9 @@ class OnlineFeatureInterface {
features.push_back(std::move(f));
}
return features;
// return torch::cat(features, [>dim<] 0);
#if 0
return torch::cat(features, /*dim*/ 0);
#endif
}
/// This would be called from the application, when you get more wave data.

View File

@ -4,8 +4,9 @@
#include "kaldifeat/python/csrc/online-feature.h"
#include "kaldifeat/csrc/online-feature.h"
#include <string>
#include "kaldifeat/csrc/online-feature.h"
namespace kaldifeat {
template <typename C>

View File

@ -9,6 +9,6 @@ from _kaldifeat import (
)
from .fbank import Fbank, OnlineFbank
from .mfcc import Mfcc
from .mfcc import Mfcc, OnlineMfcc
from .plp import Plp
from .spectrogram import Spectrogram

View File

@ -20,4 +20,4 @@ class OnlineFbank(OnlineFeature):
def __setstate__(self, state):
self.opts = _kaldifeat.FbankOptions.from_dict(state)
self.computer = _kaldifeat.Fbank(self.opts)
self.computer = _kaldifeat.OnlineFbank(self.opts)

View File

@ -4,9 +4,20 @@
import _kaldifeat
from .offline_feature import OfflineFeature
from .online_feature import OnlineFeature
class Mfcc(OfflineFeature):
def __init__(self, opts: _kaldifeat.MfccOptions):
super().__init__(opts)
self.computer = _kaldifeat.Mfcc(opts)
class OnlineMfcc(OnlineFeature):
def __init__(self, opts: _kaldifeat.MfccOptions):
super().__init__(opts)
self.computer = _kaldifeat.OnlineMfcc(opts)
def __setstate__(self, state):
self.opts = _kaldifeat.MfccOptions.from_dict(state)
self.computer = _kaldifeat.OnlineMfcc(self.opts)

View File

@ -13,24 +13,82 @@ import kaldifeat
cur_dir = Path(__file__).resolve().parent
def test_online_mfcc(
opts: kaldifeat.MfccOptions,
wave: torch.Tensor,
cpu_features: torch.Tensor,
):
"""
Args:
opts:
The options to create the online mfcc extractor.
wave:
The input 1-D waveform.
cpu_features:
The groud truth features that are computed offline
"""
online_mfcc = kaldifeat.OnlineMfcc(opts)
num_processed_frames = 0
i = 0 # current sample index to feed
while not online_mfcc.is_last_frame(num_processed_frames - 1):
while num_processed_frames < online_mfcc.num_frames_ready:
# There are new frames to be processed
frame = online_mfcc.get_frame(num_processed_frames)
assert torch.allclose(
frame.squeeze(0), cpu_features[num_processed_frames], atol=1e-3
)
num_processed_frames += 1
# Simulate streaming . Send a random number of audio samples
# to the extractor
num_samples = torch.randint(300, 1000, (1,)).item()
samples = wave[i : (i + num_samples)] # noqa
i += num_samples
if len(samples) == 0:
online_mfcc.input_finished()
continue
online_mfcc.accept_waveform(16000, samples)
assert num_processed_frames == online_mfcc.num_frames_ready
assert num_processed_frames == cpu_features.size(0)
def test_mfcc_default():
print("=====test_mfcc_default=====")
filename = cur_dir / "test_data/test.wav"
wave = read_wave(filename)
gt = read_ark_txt(cur_dir / "test_data/test-mfcc.txt")
cpu_features = None
for device in get_devices():
print("device", device)
opts = kaldifeat.MfccOptions()
opts.device = device
opts.frame_opts.dither = 0
mfcc = kaldifeat.Mfcc(opts)
filename = cur_dir / "test_data/test.wav"
wave = read_wave(filename).to(device)
features = mfcc(wave)
gt = read_ark_txt(cur_dir / "test_data/test-mfcc.txt")
features = mfcc(wave.to(device))
if device.type == "cpu":
cpu_features = features
assert torch.allclose(features.cpu(), gt, atol=1e-1)
opts = kaldifeat.MfccOptions()
opts.frame_opts.dither = 0
test_online_mfcc(opts, wave, cpu_features)
def test_mfcc_no_snip_edges():
print("=====test_mfcc_no_snip_edges=====")
filename = cur_dir / "test_data/test.wav"
wave = read_wave(filename)
gt = read_ark_txt(cur_dir / "test_data/test-mfcc-no-snip-edges.txt")
cpu_features = None
for device in get_devices():
print("device", device)
opts = kaldifeat.MfccOptions()
@ -39,13 +97,19 @@ def test_mfcc_no_snip_edges():
opts.frame_opts.snip_edges = False
mfcc = kaldifeat.Mfcc(opts)
filename = cur_dir / "test_data/test.wav"
wave = read_wave(filename).to(device)
features = mfcc(wave)
gt = read_ark_txt(cur_dir / "test_data/test-mfcc-no-snip-edges.txt")
features = mfcc(wave.to(device))
if device.type == "cpu":
cpu_features = features
assert torch.allclose(features.cpu(), gt, rtol=1e-1)
opts = kaldifeat.MfccOptions()
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
test_online_mfcc(opts, wave, cpu_features)
def test_pickle():
for device in get_devices():
@ -60,6 +124,16 @@ def test_pickle():
assert str(mfcc.opts) == str(mfcc2.opts)
opts = kaldifeat.MfccOptions()
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
mfcc = kaldifeat.OnlineMfcc(opts)
data = pickle.dumps(mfcc)
mfcc2 = pickle.loads(data)
assert str(mfcc.opts) == str(mfcc2.opts)
if __name__ == "__main__":
test_mfcc_default()