Wei Kang 6e609c67a2
Using streaming conformer as transducer encoder (#380)
* support streaming in conformer

* Add more documents

* support streaming on pruned_transducer_stateless2; add delay penalty; fixes for decode states

* Minor fixes

* streaming for pruned_transducer_stateless4

* Fix conv cache error, support async streaming decoding

* Fix style

* Fix style

* Fix style

* Add torch.jit.export

* mask the initial cache

* Cutting off invalid frames of encoder_embed output

* fix relative positional encoding in streaming decoding for compution saving

* Minor fixes

* Minor fixes

* Minor fixes

* Minor fixes

* Minor fixes

* Fix jit export for torch 1.6

* Minor fixes for streaming decoding

* Minor fixes on decode stream

* move model parameters to train.py

* make states in forward streaming optional

* update pretrain to support streaming model

* update results.md

* update tensorboard and pre-models

* fix typo

* Fix tests

* remove unused arguments

* add streaming decoding ci

* Minor fix

* Minor fix

* disable right context by default
2022-06-28 00:18:54 +08:00

77 lines
2.1 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./pruned_transducer_stateless/test_model.py
"""
import torch
from train import get_params, get_transducer_model
def test_model():
params = get_params()
params.vocab_size = 500
params.blank_id = 0
params.context_size = 2
params.unk_id = 2
params.dynamic_chunk_training = False
params.short_chunk_size = 25
params.num_left_chunks = 4
params.causal_convolution = False
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
torch.jit.script(model)
def test_model_streaming():
params = get_params()
params.vocab_size = 500
params.blank_id = 0
params.context_size = 2
params.unk_id = 2
params.dynamic_chunk_training = True
params.short_chunk_size = 25
params.num_left_chunks = 4
params.causal_convolution = True
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
torch.jit.script(model)
def main():
test_model()
test_model_streaming()
if __name__ == "__main__":
main()