icefall/egs/multi_zh-hans/ASR/local/preprocess_kespeech.py
zr_jin 0f1bc6f8af
Multi_zh-Hans Recipe (#1238)
* Init commit for recipes trained on multiple zh datasets.

* fbank extraction for thchs30

* added support for aishell1

* added support for aishell-2

* fixes

* fixes

* fixes

* added support for stcmds and primewords

* fixes

* added support for magicdata

script for fbank computation not done yet

* added script for magicdata fbank computation

* file permission fixed

* updated for the wenetspeech recipe

* updated

* Update preprocess_kespeech.py

* updated

* updated

* updated

* updated

* file permission fixed

* updated paths

* fixes

* added support for kespeech dev/test set fbank computation

* fixes for file permission

* refined support for KeSpeech

* added scripts for BPE model training

* updated

* init commit for the multi_zh-cn zipformer recipe

* disable speed perturbation by default

* updated

* updated

* added necessary files for the zipformer recipe

* removed redundant wenetspeech M and S sets

* updates for multi dataset decoding

* refined

* formatting issues fixed

* updated

* minor fixes

* this commit finalize the recipe (hopefully)

* fixed formatting issues

* minor fixes

* updated

* using soft links to reduce redundancy

* minor updates

* using soft links to reduce redundancy

* minor updates

* minor updates

* using soft links to reduce redundancy

* minor updates

* Update README.md

* minor updates

* Update egs/multi_zh-hans/ASR/local/compute_fbank_magicdata.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Update egs/multi_zh-hans/ASR/local/compute_fbank_magicdata.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Update egs/multi_zh-hans/ASR/local/compute_fbank_stcmds.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Update egs/multi_zh-hans/ASR/local/compute_fbank_stcmds.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Update egs/multi_zh-hans/ASR/local/compute_fbank_primewords.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Update egs/multi_zh-hans/ASR/local/compute_fbank_primewords.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* minor updates

* minor fixes

* fixed a formatting issue

* Update preprocess_kespeech.py

* Update prepare.sh

* Update egs/multi_zh-hans/ASR/local/compute_fbank_kespeech_splits.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Update egs/multi_zh-hans/ASR/local/preprocess_kespeech.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* removed redundant files

* symlinks added

* minor updates

* added CI tests for `multi_zh-hans`

* minor fixes

* Update run-multi-zh_hans-zipformer.sh

* Update run-multi-zh_hans-zipformer.sh

* Update run-multi-zh_hans-zipformer.sh

* Update run-multi-zh_hans-zipformer.sh

* Update run-multi-zh_hans-zipformer.sh

* Update run-multi-zh_hans-zipformer.sh

* Update run-multi-zh_hans-zipformer.sh

---------

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
2023-09-13 11:57:05 +08:00

152 lines
4.9 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
# Copyright 2023 Xiaomi Corp. (Zengrui Jin)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import re
from pathlib import Path
from lhotse import CutSet, SupervisionSegment
from lhotse.recipes.utils import read_manifests_if_cached
from icefall import setup_logger
# Similar text filtering and normalization procedure as in:
# https://github.com/SpeechColab/WenetSpeech/blob/main/toolkits/kaldi/wenetspeech_data_prep.sh
def normalize_text(
utt: str,
punct_pattern=re.compile(r"<(PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"),
whitespace_pattern=re.compile(r"\s\s+"),
) -> str:
return whitespace_pattern.sub(" ", punct_pattern.sub("", utt))
def has_no_oov(
sup: SupervisionSegment,
oov_pattern=re.compile(r"<(SIL|MUSIC|NOISE|OTHER|SPOKEN_NOISE)>"),
) -> bool:
return oov_pattern.search(sup.text) is None
def preprocess_kespeech(speed_perturb: bool = False):
src_dir = Path("data/manifests/kespeech")
output_dir = Path("data/fbank/kespeech")
output_dir.mkdir(exist_ok=True)
# Note: By default, we preprocess all sub-parts.
# You can delete those that you don't need.
# For instance, if you don't want to use the test subpart, just remove
# the line below containing "test"
dataset_parts = (
"dev_phase1",
"dev_phase2",
"test",
"train_phase1",
"train_phase2",
)
logging.info("Loading manifest (may take 10 minutes)")
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
suffix="jsonl.gz",
prefix="kespeech-asr",
)
assert manifests is not None
assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)
logging_threshold = 50
logging_count = 0
for partition, m in manifests.items():
logging.info(f"Processing {partition}")
raw_cuts_path = output_dir / f"kespeech-asr_cuts_{partition}_raw.jsonl.gz"
if raw_cuts_path.is_file():
logging.info(f"{partition} already exists - skipping")
continue
# Note this step makes the recipe different than LibriSpeech:
# We must filter out some utterances and remove punctuation
# to be consistent with Kaldi.
logging.info("Filtering OOV utterances from supervisions")
m["supervisions"] = m["supervisions"].filter(has_no_oov)
logging.info(f"Normalizing text in {partition}")
for sup in m["supervisions"]:
orig_text = sup.text
sup.text = normalize_text(sup.text)
if logging_count < logging_threshold and len(orig_text) != len(sup.text):
logging_count += 1
logging.info(
f"\nOriginal text vs normalized text:\n{orig_text}\n{sup.text}"
)
# Create long-recording cut manifests.
logging.info(f"Processing {partition}")
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
# Run data augmentation that needs to be done in the
# time domain.
if partition not in [
"dev_phase1",
"dev_phase2",
"test",
]:
if speed_perturb:
logging.info(
f"Speed perturb for {partition} with factors 0.9 and 1.1 "
"(Perturbing may take 8 minutes and saving may take 20 minutes)"
)
cut_set = (
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
)
logging.info(f"Saving to {raw_cuts_path}")
cut_set.to_file(raw_cuts_path)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--speed-perturb",
type=bool,
default=False,
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
)
return parser.parse_args()
def main():
setup_logger(log_filename="./log-preprocess-kespeech")
args = get_args()
preprocess_kespeech(speed_perturb=args.speed_perturb)
logging.info("Done")
if __name__ == "__main__":
main()