icefall/egs/LJSpeech/ASR/prepare_pseudo_LJ.sh
2023-01-19 11:27:19 +09:00

157 lines
4.5 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
. ../../../tools/activate_python.sh
set -eou pipefail
nj=15
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/LJSpeech_pseudo
# You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it.
# You can download them from https://www.openslr.org/12
#
# - $dl_dir/lm
# This directory contains the following files downloaded from
# http://www.openslr.org/resources/11
#
# - 3-gram.pruned.1e-7.arpa.gz
# - 3-gram.pruned.1e-7.arpa
# - 4-gram.arpa.gz
# - 4-gram.arpa
# - LJSpeech_pseudo-vocab.txt
# - LJSpeech_pseudo-lexicon.txt
# - LJSpeech_pseudo-lm-norm.txt.gz
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=/DB
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
5000
2000
1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/LJSpeech_pseudo,
# you can create a symlink
#
# ln -sfv /path/to/LJSpeech_pseudo $dl_dir/LJSpeech_pseudo
#
if [ ! -d $dl_dir/LJSpeech_pseudo/wav ]; then
echo "download not supported yet";
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare LJSpeech_pseudo manifest"
# We assume that you have downloaded the LJSpeech_pseudo corpus (ver 1.1)
# You need to prepare LJSpeech_pseudo according to data_settings/*_list.txt like below
# $dl_dir/LJSpeech_pseudo
# |-- wavs
# | |-- train
# | |-- dev
# | |-- test
# |-- texts
# |-- metadata.csv
# to $dl_dir/LJSpeech_pseudo
if [ ! -e $dl_dir/LJSpeech_pseudo/.LJSpeech_pseudo.done ]; then
for dset in "train" "dev" "test"; do
log "Resampling LJSpeech_pseudo $dset set"
file_list=`ls $dl_dir/LJSpeech_pseudo/wavs/$dset/`
for wavfile in $file_list; do
sox -v 0.9 $dl_dir/LJSpeech_pseudo/wavs/$dset/$wavfile -r 16000 -e signed-integer $dl_dir/LJSpeech_pseudo/wavs/$dset/tmp_$wavfile
mv $dl_dir/LJSpeech_pseudo/wavs/$dset/tmp_$wavfile $dl_dir/LJSpeech_pseudo/wavs/$dset/$wavfile
done
log "Resampling $dset done"
done
sudo touch $dl_dir/LJSpeech_pseudo/.LJSpeech_pseudo.done
fi
mkdir -p data/manifests
if [ ! -e data/manifests/.LJSpeech_pseudo.done ]; then
python local/prepare_LJSpeech_pseudo.py $dl_dir/LJSpeech_pseudo
touch data/manifests/.LJSpeech_pseudo.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 3: Compute fbank for LJSpeech_pseudo"
mkdir -p data/fbank
if [ ! -e data/fbank/.LJSpeech_pseudo.done ]; then
./local/compute_fbank_LJSpeech_pseudo.py --data-dir $dl_dir/LJSpeech_pseudo
touch data/fbank/.LJSpeech_pseudo.done
fi
if [ ! -e data/fbank/.LJSpeech_pseudo-validated.done ]; then
log "Validating data/fbank for LJSpeech_pseudo"
parts=`ls /DB/LJSpeech_pseudo/wavs/`
for part in ${parts[@]}; do
python3 ./local/validate_manifest.py \
data/fbank/LJSpeech_pseudo_cuts_${part}.jsonl.gz
done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi