marcoyang1998 1f0408b103
Support Transformer LM (#750)
* support transformer LM

* show number of parameters during training

* update docstring

* testing files for ppl calculation

* add lm wrampper for rnn and transformer LM

* apply lm wrapper in lm shallow fusion

* small updates

* update decode.py to support LM fusion and LODR

* add export.py

* update CI and workflow

* update decoding results

* fix CI

* remove transformer LM from CI test
2022-12-29 10:53:36 +08:00

187 lines
4.8 KiB
Python

#!/usr/bin/env python3
# Copyright (c) 2022 Xiaomi Corporation (authors: Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script converts several saved checkpoints
# to a single one using model averaging.
import argparse
import logging
from pathlib import Path
import torch
from model import TransformerLM
from icefall.checkpoint import load_checkpoint
from icefall.utils import AttributeDict, load_averaged_model, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=11,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=5,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
parser.add_argument(
"--vocab-size",
type=int,
default=500,
help="Vocabulary size of the model",
)
parser.add_argument(
"--embedding-dim",
type=int,
default=768,
help="Embedding dim of the model",
)
parser.add_argument(
"--encoder-dim",
type=int,
default=768,
help="Encoder dim of the model",
)
parser.add_argument(
"--dim_feedforward",
type=int,
default=2048,
help="Hidden dim of the model",
)
parser.add_argument(
"--nhead",
type=int,
default=8,
help="Number of attention heads",
)
parser.add_argument(
"--num-layers",
type=int,
default=16,
help="Number of Transformer layers",
)
parser.add_argument(
"--tie-weights",
type=str2bool,
default=True,
help="""True to share the weights between the input embedding layer and the
last output linear layer
""",
)
parser.add_argument(
"--exp-dir",
type=str,
default="rnn_lm/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--jit",
type=str2bool,
default=True,
help="""True to save a model after applying torch.jit.script.
""",
)
return parser
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = AttributeDict({})
params.update(vars(args))
logging.info(params)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
logging.info("About to create model")
model = TransformerLM(
vocab_size=params.vocab_size,
d_model=params.encoder_dim,
embedding_dim=params.embedding_dim,
dim_feedforward=params.dim_feedforward,
nhead=params.nhead,
num_layers=params.num_layers,
tie_weights=params.tie_weights,
params=params,
)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
model.to(device)
if params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
model = load_averaged_model(
params.exp_dir, model, params.epoch, params.avg, device
)
model.to("cpu")
model.eval()
if params.jit:
logging.info("Using torch.jit.script")
model = torch.jit.script(model)
filename = params.exp_dir / "cpu_jit.pt"
model.save(str(filename))
logging.info(f"Saved to {filename}")
else:
logging.info("Not using torch.jit.script")
# Save it using a format so that it can be loaded
# by :func:`load_checkpoint`
filename = params.exp_dir / "pretrained.pt"
torch.save({"model": model.state_dict()}, str(filename))
logging.info(f"Saved to {filename}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()