mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
76 lines
1.8 KiB
Python
Executable File
76 lines
1.8 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
# You can install sentencepiece via:
|
|
#
|
|
# pip install sentencepiece
|
|
#
|
|
# Due to an issue reported in
|
|
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
|
#
|
|
# Please install a version >=0.1.96
|
|
|
|
import argparse
|
|
import shutil
|
|
from pathlib import Path
|
|
|
|
import sentencepiece as spm
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--lang-dir",
|
|
type=str,
|
|
help="""Input and output directory.
|
|
It should contain the training corpus: train.txt.
|
|
The generated bpe.model is saved to this directory.
|
|
""",
|
|
)
|
|
parser.add_argument(
|
|
"--vocab-size",
|
|
type=int,
|
|
help="Vocabulary size for BPE training",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def main():
|
|
args = get_args()
|
|
vocab_size = args.vocab_size
|
|
lang_dir = Path(args.lang_dir)
|
|
|
|
model_type = "unigram"
|
|
|
|
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
|
train_text = f"{lang_dir}/train.txt"
|
|
character_coverage = 1.0
|
|
input_sentence_size = 100000000
|
|
|
|
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
|
unk_id = len(user_defined_symbols)
|
|
# Note: unk_id is fixed to 2.
|
|
# If you change it, you should also change other
|
|
# places that are using it.
|
|
|
|
model_file = Path(model_prefix + ".model")
|
|
if not model_file.is_file():
|
|
spm.SentencePieceTrainer.train(
|
|
input=train_text,
|
|
vocab_size=vocab_size,
|
|
model_type=model_type,
|
|
model_prefix=model_prefix,
|
|
input_sentence_size=input_sentence_size,
|
|
character_coverage=character_coverage,
|
|
user_defined_symbols=user_defined_symbols,
|
|
unk_id=unk_id,
|
|
bos_id=-1,
|
|
eos_id=-1,
|
|
)
|
|
|
|
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|