mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* Various fixes to support torch script. * Add tests to ensure that the model is torch scriptable. * Update tests.
84 lines
2.7 KiB
Python
84 lines
2.7 KiB
Python
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import List
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class Joiner(nn.Module):
|
|
def __init__(self, input_dim: int, output_dim: int):
|
|
super().__init__()
|
|
|
|
self.input_dim = input_dim
|
|
self.output_dim = output_dim
|
|
self.output_linear = nn.Linear(input_dim, output_dim)
|
|
|
|
def forward(
|
|
self,
|
|
encoder_out: torch.Tensor,
|
|
decoder_out: torch.Tensor,
|
|
encoder_out_len: torch.Tensor,
|
|
decoder_out_len: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
encoder_out:
|
|
Output from the encoder. Its shape is (N, T, self.input_dim).
|
|
decoder_out:
|
|
Output from the decoder. Its shape is (N, U, self.input_dim).
|
|
encoder_out_len:
|
|
A 1-D tensor of shape (N,) containing valid number of frames
|
|
before padding in `encoder_out`.
|
|
decoder_out_len:
|
|
A 1-D tensor of shape (N,) containing valid number of frames
|
|
before padding in `decoder_out`.
|
|
Returns:
|
|
Return a tensor of shape (sum_all_TU, self.output_dim).
|
|
"""
|
|
assert encoder_out.ndim == decoder_out.ndim == 3
|
|
assert encoder_out.size(0) == decoder_out.size(0)
|
|
assert encoder_out.size(2) == self.input_dim
|
|
assert decoder_out.size(2) == self.input_dim
|
|
|
|
N = encoder_out.size(0)
|
|
|
|
encoder_out_len: List[int] = encoder_out_len.tolist()
|
|
decoder_out_len: List[int] = decoder_out_len.tolist()
|
|
|
|
encoder_out_list = [
|
|
encoder_out[i, : encoder_out_len[i], :] for i in range(N)
|
|
]
|
|
|
|
decoder_out_list = [
|
|
decoder_out[i, : decoder_out_len[i], :] for i in range(N)
|
|
]
|
|
|
|
x = [
|
|
e.unsqueeze(1) + d.unsqueeze(0)
|
|
for e, d in zip(encoder_out_list, decoder_out_list)
|
|
]
|
|
|
|
x = [p.reshape(-1, self.input_dim) for p in x]
|
|
x = torch.cat(x)
|
|
|
|
activations = torch.tanh(x)
|
|
|
|
logits = self.output_linear(activations)
|
|
|
|
return logits
|