icefall/egs/yesno/ASR/tdnn/onnx_pretrained.py
2023-09-21 21:16:14 +08:00

244 lines
6.6 KiB
Python
Executable File

#!/usr/bin/env python3
"""
This file shows how to use an ONNX model for decoding with onnxruntime.
Usage:
(1) Use a not quantized ONNX model, i.e., a float32 model
./tdnn/onnx_pretrained.py \
--nn-model ./tdnn/exp/model-epoch-14-avg-2.onnx \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav
(2) Use a quantized ONNX model, i.e., an int8 model
./tdnn/onnx_pretrained.py \
--nn-model ./tdnn/exp/model-epoch-14-avg-2.int8.onnx \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav
Note that to generate ./tdnn/exp/model-epoch-14-avg-2.onnx,
and ./tdnn/exp/model-epoch-14-avg-2.onnx,
you can use ./export_onnx.py --epoch 14 --avg 2
"""
import argparse
import logging
import math
from typing import List
import k2
import kaldifeat
import onnxruntime as ort
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
from icefall.decode import get_lattice, one_best_decoding
from icefall.utils import AttributeDict, get_texts
class OnnxModel:
def __init__(self, nn_model: str):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.model = ort.InferenceSession(
nn_model,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
meta = self.model.get_modelmeta().custom_metadata_map
self.vocab_size = int(meta["vocab_size"])
def run(
self,
x: torch.Tensor,
) -> torch.Tensor:
"""
Args:
x:
A 3-D tensor of shape (N, T, C)
Returns:
Return a 3-D tensor log_prob of shape (N, T, C)
"""
out = self.model.run(
[
self.model.get_outputs()[0].name,
],
{
self.model.get_inputs()[0].name: x.numpy(),
},
)
return torch.from_numpy(out[0])
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--nn-model",
type=str,
required=True,
help="""Path to the torchscript model.
You can use ./tdnn/export.py --jit 1
to obtain it
""",
)
parser.add_argument(
"--words-file",
type=str,
required=True,
help="Path to words.txt",
)
parser.add_argument("--HLG", type=str, required=True, help="Path to HLG.pt.")
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. ",
)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
if sample_rate != expected_sample_rate:
wave = torchaudio.functional.resample(
wave,
orig_freq=sample_rate,
new_freq=expected_sample_rate,
)
# We use only the first channel
ans.append(wave[0].contiguous())
return ans
def get_params() -> AttributeDict:
params = AttributeDict(
{
"feature_dim": 23,
"sample_rate": 8000,
"search_beam": 20,
"output_beam": 8,
"min_active_states": 30,
"max_active_states": 10000,
"use_double_scores": True,
}
)
return params
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
params.update(vars(args))
logging.info(f"{params}")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
logging.info(f"Loading onnx model {params.nn_model}")
model = OnnxModel(params.nn_model)
logging.info(f"Loading HLG from {args.HLG}")
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
HLG = HLG.to(device)
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = params.sample_rate
opts.mel_opts.num_bins = params.feature_dim
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {params.sound_files}")
waves = read_sound_files(
filenames=params.sound_files, expected_sample_rate=params.sample_rate
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
# Note: We don't use key padding mask for attention during decoding
nnet_output = model.run(features)
batch_size = nnet_output.shape[0]
supervision_segments = torch.tensor(
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
dtype=torch.int32,
)
lattice = get_lattice(
nnet_output=nnet_output,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
min_active_states=params.min_active_states,
max_active_states=params.max_active_states,
)
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
hyps = get_texts(best_path)
word_sym_table = k2.SymbolTable.from_file(params.words_file)
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()