mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
472 lines
14 KiB
Python
Executable File
472 lines
14 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This script loads ONNX models and uses them to decode waves.
|
|
You can use the following command to get the exported models:
|
|
|
|
./lstm_transducer_stateless2/export.py \
|
|
--exp-dir ./lstm_transducer_stateless2/exp \
|
|
--bpe-model data/lang_bpe_500/bpe.model \
|
|
--epoch 20 \
|
|
--avg 10 \
|
|
--onnx 1
|
|
|
|
Usage of this script:
|
|
|
|
./lstm_transducer_stateless2/onnx-streaming-decode.py \
|
|
--encoder-model-filename ./lstm_transducer_stateless2/exp/encoder.onnx \
|
|
--decoder-model-filename ./lstm_transducer_stateless2/exp/decoder.onnx \
|
|
--joiner-model-filename ./lstm_transducer_stateless2/exp/joiner.onnx \
|
|
--joiner-encoder-proj-model-filename ./lstm_transducer_stateless2/exp/joiner_encoder_proj.onnx \
|
|
--joiner-decoder-proj-model-filename ./lstm_transducer_stateless2/exp/joiner_decoder_proj.onnx \
|
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
|
/path/to/foo.wav \
|
|
/path/to/bar.wav
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
from typing import List, Optional, Tuple
|
|
|
|
from icefall import is_module_available
|
|
|
|
if not is_module_available("onnxruntime"):
|
|
raise ValueError("Please 'pip install onnxruntime' first.")
|
|
|
|
import onnxruntime as ort
|
|
import sentencepiece as spm
|
|
import torch
|
|
import torchaudio
|
|
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model-filename",
|
|
type=str,
|
|
help="Path to bpe.model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--encoder-model-filename",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the encoder onnx model. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--decoder-model-filename",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the decoder onnx model. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--joiner-model-filename",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the joiner onnx model. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--joiner-encoder-proj-model-filename",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the joiner encoder_proj onnx model. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--joiner-decoder-proj-model-filename",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the joiner decoder_proj onnx model. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
help="""Path to bpe.model.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"sound_filename",
|
|
type=str,
|
|
help="The input sound file(s) to transcribe. "
|
|
"Supported formats are those supported by torchaudio.load(). "
|
|
"For example, wav and flac are supported. "
|
|
"The sample rate has to be 16kHz.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--sample-rate",
|
|
type=int,
|
|
default=16000,
|
|
help="The sample rate of the input sound file",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="Context size of the decoder model",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def read_sound_files(
|
|
filenames: List[str], expected_sample_rate: float
|
|
) -> List[torch.Tensor]:
|
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
|
Args:
|
|
filenames:
|
|
A list of sound filenames.
|
|
expected_sample_rate:
|
|
The expected sample rate of the sound files.
|
|
Returns:
|
|
Return a list of 1-D float32 torch tensors.
|
|
"""
|
|
ans = []
|
|
for f in filenames:
|
|
wave, sample_rate = torchaudio.load(f)
|
|
assert (
|
|
sample_rate == expected_sample_rate
|
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
|
# We use only the first channel
|
|
ans.append(wave[0])
|
|
return ans
|
|
|
|
|
|
class Model:
|
|
def __init__(self, args):
|
|
session_opts = ort.SessionOptions()
|
|
session_opts.inter_op_num_threads = 5
|
|
session_opts.intra_op_num_threads = 5
|
|
self.session_opts = session_opts
|
|
|
|
self.init_encoder(args)
|
|
self.init_decoder(args)
|
|
self.init_joiner(args)
|
|
self.init_joiner_encoder_proj(args)
|
|
self.init_joiner_decoder_proj(args)
|
|
|
|
def init_encoder(self, args):
|
|
self.encoder = ort.InferenceSession(
|
|
args.encoder_model_filename,
|
|
sess_options=self.session_opts,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
|
|
def init_decoder(self, args):
|
|
self.decoder = ort.InferenceSession(
|
|
args.decoder_model_filename,
|
|
sess_options=self.session_opts,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
|
|
def init_joiner(self, args):
|
|
self.joiner = ort.InferenceSession(
|
|
args.joiner_model_filename,
|
|
sess_options=self.session_opts,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
|
|
def init_joiner_encoder_proj(self, args):
|
|
self.joiner_encoder_proj = ort.InferenceSession(
|
|
args.joiner_encoder_proj_model_filename,
|
|
sess_options=self.session_opts,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
|
|
def init_joiner_decoder_proj(self, args):
|
|
self.joiner_decoder_proj = ort.InferenceSession(
|
|
args.joiner_decoder_proj_model_filename,
|
|
sess_options=self.session_opts,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
|
|
def run_encoder(self, x, h0, c0) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Args:
|
|
x:
|
|
A tensor of shape (N, T, C)
|
|
h0:
|
|
A tensor of shape (num_layers, N, proj_size)
|
|
c0:
|
|
A tensor of shape (num_layers, N, hidden_size)
|
|
Returns:
|
|
Return a tuple containing:
|
|
- encoder_out: A tensor of shape (N, T', C')
|
|
- next_h0: A tensor of shape (num_layers, N, proj_size)
|
|
- next_c0: A tensor of shape (num_layers, N, hidden_size)
|
|
"""
|
|
encoder_input_nodes = self.encoder.get_inputs()
|
|
encoder_out_nodes = self.encoder.get_outputs()
|
|
x_lens = torch.tensor([x.size(1)], dtype=torch.int64)
|
|
|
|
encoder_out, encoder_out_lens, next_h0, next_c0 = self.encoder.run(
|
|
[
|
|
encoder_out_nodes[0].name,
|
|
encoder_out_nodes[1].name,
|
|
encoder_out_nodes[2].name,
|
|
encoder_out_nodes[3].name,
|
|
],
|
|
{
|
|
encoder_input_nodes[0].name: x.numpy(),
|
|
encoder_input_nodes[1].name: x_lens.numpy(),
|
|
encoder_input_nodes[2].name: h0.numpy(),
|
|
encoder_input_nodes[3].name: c0.numpy(),
|
|
},
|
|
)
|
|
return (
|
|
torch.from_numpy(encoder_out),
|
|
torch.from_numpy(next_h0),
|
|
torch.from_numpy(next_c0),
|
|
)
|
|
|
|
def run_decoder(self, decoder_input: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
decoder_input:
|
|
A tensor of shape (N, context_size). Its dtype is torch.int64.
|
|
Returns:
|
|
Return a tensor of shape (N, 1, decoder_out_dim).
|
|
"""
|
|
decoder_input_nodes = self.decoder.get_inputs()
|
|
decoder_output_nodes = self.decoder.get_outputs()
|
|
|
|
decoder_out = self.decoder.run(
|
|
[decoder_output_nodes[0].name],
|
|
{
|
|
decoder_input_nodes[0].name: decoder_input.numpy(),
|
|
},
|
|
)[0]
|
|
|
|
return self.run_joiner_decoder_proj(torch.from_numpy(decoder_out).squeeze(1))
|
|
|
|
def run_joiner(
|
|
self,
|
|
projected_encoder_out: torch.Tensor,
|
|
projected_decoder_out: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
projected_encoder_out:
|
|
A tensor of shape (N, joiner_dim)
|
|
projected_decoder_out:
|
|
A tensor of shape (N, joiner_dim)
|
|
Returns:
|
|
Return a tensor of shape (N, vocab_size)
|
|
"""
|
|
joiner_input_nodes = self.joiner.get_inputs()
|
|
joiner_output_nodes = self.joiner.get_outputs()
|
|
|
|
logits = self.joiner.run(
|
|
[joiner_output_nodes[0].name],
|
|
{
|
|
joiner_input_nodes[0].name: projected_encoder_out.numpy(),
|
|
joiner_input_nodes[1].name: projected_decoder_out.numpy(),
|
|
},
|
|
)[0]
|
|
|
|
return torch.from_numpy(logits)
|
|
|
|
def run_joiner_encoder_proj(
|
|
self,
|
|
encoder_out: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
encoder_out:
|
|
A tensor of shape (N, encoder_out_dim)
|
|
Returns:
|
|
A tensor of shape (N, joiner_dim)
|
|
"""
|
|
|
|
projected_encoder_out = self.joiner_encoder_proj.run(
|
|
[self.joiner_encoder_proj.get_outputs()[0].name],
|
|
{self.joiner_encoder_proj.get_inputs()[0].name: encoder_out.numpy()},
|
|
)[0]
|
|
|
|
return torch.from_numpy(projected_encoder_out)
|
|
|
|
def run_joiner_decoder_proj(
|
|
self,
|
|
decoder_out: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
decoder_out:
|
|
A tensor of shape (N, decoder_out_dim)
|
|
Returns:
|
|
A tensor of shape (N, joiner_dim)
|
|
"""
|
|
|
|
projected_decoder_out = self.joiner_decoder_proj.run(
|
|
[self.joiner_decoder_proj.get_outputs()[0].name],
|
|
{self.joiner_decoder_proj.get_inputs()[0].name: decoder_out.numpy()},
|
|
)[0]
|
|
|
|
return torch.from_numpy(projected_decoder_out)
|
|
|
|
|
|
def create_streaming_feature_extractor() -> OnlineFeature:
|
|
"""Create a CPU streaming feature extractor.
|
|
|
|
At present, we assume it returns a fbank feature extractor with
|
|
fixed options. In the future, we will support passing in the options
|
|
from outside.
|
|
|
|
Returns:
|
|
Return a CPU streaming feature extractor.
|
|
"""
|
|
opts = FbankOptions()
|
|
opts.device = "cpu"
|
|
opts.frame_opts.dither = 0
|
|
opts.frame_opts.snip_edges = False
|
|
opts.frame_opts.samp_freq = 16000
|
|
opts.mel_opts.num_bins = 80
|
|
return OnlineFbank(opts)
|
|
|
|
|
|
def greedy_search(
|
|
model: Model,
|
|
encoder_out: torch.Tensor,
|
|
decoder_out: Optional[torch.Tensor] = None,
|
|
hyp: Optional[List[int]] = None,
|
|
):
|
|
assert encoder_out.ndim == 2
|
|
assert encoder_out.shape[0] == 1, "TODO: support batch_size > 1"
|
|
context_size = 2
|
|
blank_id = 0
|
|
|
|
if decoder_out is None:
|
|
assert hyp is None, hyp
|
|
hyp = [blank_id] * context_size
|
|
decoder_input = torch.tensor([hyp], dtype=torch.int64) # (1, context_size)
|
|
decoder_out = model.run_decoder(decoder_input)
|
|
else:
|
|
assert decoder_out.shape[0] == 1
|
|
assert hyp is not None, hyp
|
|
|
|
projected_encoder_out = model.run_joiner_encoder_proj(encoder_out)
|
|
|
|
joiner_out = model.run_joiner(projected_encoder_out, decoder_out)
|
|
y = joiner_out.squeeze(0).argmax(dim=0).item()
|
|
|
|
if y != blank_id:
|
|
hyp.append(y)
|
|
decoder_input = hyp[-context_size:]
|
|
decoder_input = torch.tensor([decoder_input], dtype=torch.int64)
|
|
decoder_out = model.run_decoder(decoder_input)
|
|
|
|
return hyp, decoder_out
|
|
|
|
|
|
def main():
|
|
args = get_args()
|
|
logging.info(vars(args))
|
|
|
|
model = Model(args)
|
|
|
|
sound_file = args.sound_filename
|
|
sample_rate = 16000
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(args.bpe_model_filename)
|
|
|
|
logging.info("Constructing Fbank computer")
|
|
online_fbank = create_streaming_feature_extractor()
|
|
|
|
logging.info(f"Reading sound files: {sound_file}")
|
|
wave_samples = read_sound_files(
|
|
filenames=[sound_file],
|
|
expected_sample_rate=sample_rate,
|
|
)[0]
|
|
logging.info(wave_samples.shape)
|
|
|
|
num_encoder_layers = 12
|
|
batch_size = 1
|
|
d_model = 512
|
|
rnn_hidden_size = 1024
|
|
|
|
h0 = torch.zeros(num_encoder_layers, batch_size, d_model)
|
|
c0 = torch.zeros(num_encoder_layers, batch_size, rnn_hidden_size)
|
|
|
|
hyp = None
|
|
decoder_out = None
|
|
|
|
num_processed_frames = 0
|
|
segment = 9
|
|
offset = 4
|
|
|
|
chunk = 3200 # 0.2 second
|
|
|
|
start = 0
|
|
while start < wave_samples.numel():
|
|
end = min(start + chunk, wave_samples.numel())
|
|
samples = wave_samples[start:end]
|
|
start += chunk
|
|
|
|
online_fbank.accept_waveform(
|
|
sampling_rate=sample_rate,
|
|
waveform=samples,
|
|
)
|
|
while online_fbank.num_frames_ready - num_processed_frames >= segment:
|
|
frames = []
|
|
for i in range(segment):
|
|
frames.append(online_fbank.get_frame(num_processed_frames + i))
|
|
|
|
num_processed_frames += offset
|
|
frames = torch.cat(frames, dim=0).unsqueeze(0)
|
|
encoder_out, h0, c0 = model.run_encoder(frames, h0, c0)
|
|
hyp, decoder_out = greedy_search(
|
|
model, encoder_out.squeeze(0), decoder_out, hyp
|
|
)
|
|
online_fbank.accept_waveform(
|
|
sampling_rate=sample_rate, waveform=torch.zeros(5000, dtype=torch.float)
|
|
)
|
|
|
|
online_fbank.input_finished()
|
|
while online_fbank.num_frames_ready - num_processed_frames >= segment:
|
|
frames = []
|
|
for i in range(segment):
|
|
frames.append(online_fbank.get_frame(num_processed_frames + i))
|
|
num_processed_frames += offset
|
|
frames = torch.cat(frames, dim=0).unsqueeze(0)
|
|
encoder_out, h0, c0 = model.run_encoder(frames, h0, c0)
|
|
hyp, decoder_out = greedy_search(
|
|
model, encoder_out.squeeze(0), decoder_out, hyp
|
|
)
|
|
|
|
context_size = 2
|
|
|
|
logging.info(sound_file)
|
|
logging.info(sp.decode(hyp[context_size:]))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
main()
|