2023-10-18 15:07:12 +08:00

442 lines
15 KiB
Python

# Copyright 2021 Piotr Żelasko
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import re
from functools import lru_cache
from pathlib import Path
from typing import Any, Dict, Optional
import torch
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
from lhotse.cut import Cut
from lhotse.dataset import (
CutConcatenate,
CutMix,
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SpecAugment,
)
from lhotse.dataset.input_strategies import OnTheFlyFeatures
from lhotse.utils import fix_random_seed
from torch.utils.data import DataLoader
from tqdm import tqdm
from icefall.utils import str2bool
class _SeedWorkers:
def __init__(self, seed: int):
self.seed = seed
def __call__(self, worker_id: int):
fix_random_seed(self.seed + worker_id)
class AmiAsrDataModule:
"""
DataModule for k2 ASR experiments.
It assumes there is always one train and valid dataloader,
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
and test-other).
It contains all the common data pipeline modules used in ASR
experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
- cut concatenation,
- augmentation,
- on-the-fly feature extraction
This class should be derived for specific corpora used in ASR tasks.
"""
def __init__(self, args: argparse.Namespace):
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="ASR data related options",
description=(
"These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc."
),
)
group.add_argument(
"--manifest-dir",
type=Path,
default=Path("data/manifests"),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--enable-musan",
type=str2bool,
default=True,
help=(
"When enabled, select noise from MUSAN and mix it "
"with training dataset. "
),
)
group.add_argument(
"--concatenate-cuts",
type=str2bool,
default=False,
help=(
"When enabled, utterances (cuts) will be concatenated "
"to minimize the amount of padding."
),
)
group.add_argument(
"--duration-factor",
type=float,
default=1.0,
help=(
"Determines the maximum duration of a concatenated cut "
"relative to the duration of the longest cut in a batch."
),
)
group.add_argument(
"--gap",
type=float,
default=1.0,
help=(
"The amount of padding (in seconds) inserted between "
"concatenated cuts. This padding is filled with noise when "
"noise augmentation is used."
),
)
group.add_argument(
"--max-duration",
type=int,
default=100.0,
help=(
"Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM."
),
)
group.add_argument(
"--max-cuts", type=int, default=None, help="Maximum cuts in a single batch."
)
group.add_argument(
"--num-buckets",
type=int,
default=50,
help=(
"The number of buckets for the BucketingSampler"
"(you might want to increase it for larger datasets)."
),
)
group.add_argument(
"--on-the-fly-feats",
type=str2bool,
default=False,
help=(
"When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available."
),
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help=(
"When enabled (=default), the examples will be "
"shuffled for each epoch."
),
)
group.add_argument(
"--num-workers",
type=int,
default=8,
help=(
"The number of training dataloader workers that " "collect the batches."
),
)
group.add_argument(
"--enable-spec-aug",
type=str2bool,
default=True,
help="When enabled, use SpecAugment for training dataset.",
)
group.add_argument(
"--spec-aug-time-warp-factor",
type=int,
default=80,
help=(
"Used only when --enable-spec-aug is True. "
"It specifies the factor for time warping in SpecAugment. "
"Larger values mean more warping. "
"A value less than 1 means to disable time warp."
),
)
group.add_argument(
"--ihm-only",
type=str2bool,
default=False,
help="When enabled, only use IHM data for training.",
)
def train_dataloaders(
self,
cuts_train: CutSet,
sampler_state_dict: Optional[Dict[str, Any]] = None,
) -> DataLoader:
"""
Args:
cuts_train:
CutSet for training.
sampler_state_dict:
The state dict for the training sampler.
"""
logging.info("About to get Musan cuts")
transforms = []
if self.args.enable_musan:
logging.info("Enable MUSAN")
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
transforms.append(
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
)
else:
logging.info("Disable MUSAN")
if self.args.concatenate_cuts:
logging.info(
"Using cut concatenation with duration factor "
f"{self.args.duration_factor} and gap {self.args.gap}."
)
# Cut concatenation should be the first transform in the list,
# so that if we e.g. mix noise in, it will fill the gaps between
# different utterances.
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
input_transforms = []
if self.args.enable_spec_aug:
logging.info("Enable SpecAugment")
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
input_transforms.append(
SpecAugment(
time_warp_factor=self.args.spec_aug_time_warp_factor,
num_frame_masks=2,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
)
)
else:
logging.info("Disable SpecAugment")
logging.info("About to create train dataset")
if self.args.on_the_fly_feats:
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
input_transforms=input_transforms,
)
else:
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_transforms=input_transforms,
)
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
max_cuts=self.args.max_cuts,
shuffle=False,
num_buckets=self.args.num_buckets,
drop_last=True,
)
logging.info("About to create train dataloader")
if sampler_state_dict is not None:
logging.info("Loading sampler state dict")
train_sampler.load_state_dict(sampler_state_dict)
# 'seed' is derived from the current random state, which will have
# previously been set in the main process.
seed = torch.randint(0, 100000, ()).item()
worker_init_fn = _SeedWorkers(seed)
train_dl = DataLoader(
train,
sampler=train_sampler,
batch_size=None,
num_workers=self.args.num_workers,
persistent_workers=False,
worker_init_fn=worker_init_fn,
)
return train_dl
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
transforms = []
if self.args.concatenate_cuts:
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
logging.info("About to create dev dataset")
if self.args.on_the_fly_feats:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
)
else:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
)
valid_sampler = DynamicBucketingSampler(
cuts_valid,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.info("About to create dev dataloader")
valid_dl = DataLoader(
validate,
sampler=valid_sampler,
batch_size=None,
num_workers=2,
persistent_workers=False,
)
return valid_dl
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
logging.debug("About to create test dataset")
test = K2SpeechRecognitionDataset(
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
if self.args.on_the_fly_feats
else PrecomputedFeatures(),
return_cuts=True,
)
sampler = DynamicBucketingSampler(
cuts, max_duration=self.args.max_duration, shuffle=False
)
logging.debug("About to create test dataloader")
test_dl = DataLoader(
test,
batch_size=None,
sampler=sampler,
num_workers=self.args.num_workers,
)
return test_dl
def remove_short_cuts(self, cut: Cut) -> bool:
"""
See: https://github.com/k2-fsa/icefall/issues/500
Basically, the zipformer model subsamples the input using the following formula:
num_out_frames = (num_in_frames - 7)//2
For num_out_frames to be at least 1, num_in_frames must be at least 9.
"""
return cut.duration >= 0.09
@lru_cache()
def train_cuts(self, sp: Optional[Any] = None) -> CutSet:
logging.info("About to get AMI train cuts")
def _remove_short_and_long_utt(c: Cut):
if c.duration < 0.2 or c.duration > 25.0:
return False
# In pruned RNN-T, we require that T >= S
# where T is the number of feature frames after subsampling
# and S is the number of tokens in the utterance
# In ./zipformer.py, the conv module uses the following expression
# for subsampling
T = ((c.num_frames - 7) // 2 + 1) // 2
tokens = sp.encode(c.supervisions[0].text, out_type=str)
return T >= len(tokens)
if self.args.ihm_only:
cuts_train = load_manifest_lazy(
self.args.manifest_dir / "cuts_train_ihm.jsonl.gz"
)
else:
cuts_train = load_manifest_lazy(
self.args.manifest_dir / "cuts_train_all.jsonl.gz"
)
return cuts_train.filter(_remove_short_and_long_utt)
@lru_cache()
def dev_ihm_cuts(self) -> CutSet:
logging.info("About to get AMI IHM dev cuts")
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_dev_ihm.jsonl.gz")
return cs.filter(self.remove_short_cuts)
@lru_cache()
def dev_sdm_cuts(self) -> CutSet:
logging.info("About to get AMI SDM dev cuts")
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_dev_sdm.jsonl.gz")
return cs.filter(self.remove_short_cuts)
@lru_cache()
def dev_mdm_cuts(self) -> CutSet:
logging.info("About to get AMI MDM dev cuts")
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_dev_mdm.jsonl.gz")
return cs.filter(self.remove_short_cuts)
@lru_cache()
def dev_gss_cuts(self) -> CutSet:
if not (self.args.manifest_dir / "cuts_dev_gss.jsonl.gz").exists():
logging.info("No GSS dev cuts found")
return None
logging.info("About to get AMI GSS-enhanced dev cuts")
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_dev_gss.jsonl.gz")
return cs.filter(self.remove_short_cuts)
@lru_cache()
def test_ihm_cuts(self) -> CutSet:
logging.info("About to get AMI IHM test cuts")
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_ihm.jsonl.gz")
return cs.filter(self.remove_short_cuts)
@lru_cache()
def test_sdm_cuts(self) -> CutSet:
logging.info("About to get AMI SDM test cuts")
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_sdm.jsonl.gz")
return cs.filter(self.remove_short_cuts)
@lru_cache()
def test_mdm_cuts(self) -> CutSet:
logging.info("About to get AMI MDM test cuts")
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_mdm.jsonl.gz")
return cs.filter(self.remove_short_cuts)
@lru_cache()
def test_gss_cuts(self) -> CutSet:
if not (self.args.manifest_dir / "cuts_test_gss.jsonl.gz").exists():
logging.info("No GSS test cuts found")
return None
logging.info("About to get AMI GSS-enhanced test cuts")
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_gss.jsonl.gz")
return cs.filter(self.remove_short_cuts)