mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
111 lines
2.8 KiB
Bash
Executable File
111 lines
2.8 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
set -eou pipefail
|
|
|
|
nj=15
|
|
stage=-1
|
|
stop_stage=100
|
|
|
|
. local/parse_options.sh || exit 1
|
|
|
|
mkdir -p data
|
|
|
|
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
|
echo "stage -1: Download LM"
|
|
mkdir -p data/lm
|
|
./local/download_lm.py
|
|
fi
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
echo "stage 0: Download data"
|
|
|
|
# If you have pre-downloaded it to /path/to/LibriSpeech,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/LibriSpeech data/
|
|
#
|
|
# The script checks that if
|
|
#
|
|
# data/LibriSpeech/test-clean/.completed exists,
|
|
#
|
|
# it will not re-download it.
|
|
#
|
|
# The same goes for dev-clean, dev-other, test-other, train-clean-100
|
|
# train-clean-360, and train-other-500
|
|
|
|
mkdir -p data/LibriSpeech
|
|
lhotse download librispeech --full data
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/musan data/
|
|
#
|
|
# and create a file data/.musan_completed
|
|
# to avoid downloading it again
|
|
if [ ! -f data/.musan_completed ]; then
|
|
lhotse download musan data
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
echo "Stage 1: Prepare librispeech manifest"
|
|
# We assume that you have downloaded the librispeech corpus
|
|
# to data/LibriSpeech
|
|
mkdir -p data/manifests
|
|
lhotse prepare librispeech -j $nj data/LibriSpeech data/manifests
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
echo "Stage 2: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to data/musan
|
|
mkdir -p data/manifests
|
|
lhotse prepare musan data/musan data/manifests
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
echo "Stage 3: Compute fbank for librispeech"
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_librispeech.py
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
echo "Stage 4: Compute fbank for musan"
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_musan.py
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
echo "Stage 5: Prepare phone based lang"
|
|
# TODO: add BPE based lang
|
|
mkdir -p data/lang
|
|
|
|
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
|
|
cat - data/lm/librispeech-lexicon.txt |
|
|
sort | uniq > data/lang/lexicon.txt
|
|
|
|
./local/prepare_lang.py
|
|
fi
|
|
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
echo "Stage 6: Prepare G"
|
|
# We assume you have install kaldilm, if not, please install
|
|
# it using: pip install kaldilm
|
|
|
|
if [ ! -e data/lm/G_3_gram.fst.txt ]; then
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="data/lang/words.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=3 \
|
|
data/lm/3-gram.pruned.1e-7.arpa > data/lm/G_3_gram.fst.txt
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|
echo "Stage 7: Compile HLG"
|
|
if [ ! -f data/lm/HLG.pt ]; then
|
|
python3 ./local/compile_hlg.py
|
|
fi
|
|
fi
|