icefall/icefall/char_graph_compiler.py
Zengwei Yao ece728d895
Apply delay penalty on k2 ctc loss (#669)
* add init files

* fix bug, apply delay penalty

* fix decoding code and getting timestamps

* add option applying delay penalty on ctc log-prob

* fix bug of streaming decoding

* minor change for bpe-based case

* add test_model.py

* add README.md

* add CI
2022-11-28 22:34:02 +08:00

122 lines
3.8 KiB
Python

# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
# Wei Kang)
#
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from typing import List
import k2
import torch
from icefall.lexicon import Lexicon
class CharCtcTrainingGraphCompiler(object):
def __init__(
self,
lexicon: Lexicon,
device: torch.device,
sos_token: str = "<sos/eos>",
eos_token: str = "<sos/eos>",
oov: str = "<unk>",
):
"""
Args:
lexicon:
It is built from `data/lang_char/lexicon.txt`.
device:
The device to use for operations compiling transcripts to FSAs.
oov:
Out of vocabulary token. When a word(token) in the transcript
does not exist in the token list, it is replaced with `oov`.
"""
assert oov in lexicon.token_table
self.oov_id = lexicon.token_table[oov]
self.token_table = lexicon.token_table
self.device = device
self.sos_id = self.token_table[sos_token]
self.eos_id = self.token_table[eos_token]
def texts_to_ids(self, texts: List[str]) -> List[List[int]]:
"""Convert a list of texts to a list-of-list of token IDs.
Args:
texts:
It is a list of strings.
An example containing two strings is given below:
['你好中国', '北京欢迎您']
Returns:
Return a list-of-list of token IDs.
"""
ids: List[List[int]] = []
whitespace = re.compile(r"([ \t])")
for text in texts:
text = re.sub(whitespace, "", text)
sub_ids = [
self.token_table[txt] if txt in self.token_table else self.oov_id
for txt in text
]
ids.append(sub_ids)
return ids
def texts_to_ids_with_bpe(self, texts: List[str]) -> List[List[int]]:
"""Convert a list of texts (which include chars and bpes)
to a list-of-list of token IDs.
Args:
texts:
It is a list of strings.
An example containing two strings is given below:
[['', '', '▁C', 'hina'], ['','', '', 'welcome', '']
Returns:
Return a list-of-list of token IDs.
"""
ids: List[List[int]] = []
for text in texts:
text = text.split("/")
sub_ids = [
self.token_table[txt] if txt in self.token_table else self.oov_id
for txt in text
]
ids.append(sub_ids)
return ids
def compile(
self,
token_ids: List[List[int]],
modified: bool = False,
) -> k2.Fsa:
"""Build a ctc graph from a list-of-list token IDs.
Args:
piece_ids:
It is a list-of-list integer IDs.
modified:
See :func:`k2.ctc_graph` for its meaning.
Return:
Return an FsaVec, which is the result of composing a
CTC topology with linear FSAs constructed from the given
piece IDs.
"""
graph = k2.ctc_graph(token_ids, modified=modified, device=self.device)
return graph