icefall/egs/aishell/ASR/prepare.sh
Wei Kang 30c43b7f69
Add aishell recipe (#30)
* Add aishell recipe

* Remove unnecessary code and update docs

* adapt to k2 v1.7, add docs and results

* Update conformer ctc model

* Update docs, pretrained.py & results

* Fix code style

* Fix code style

* Fix code style

* Minor fix

* Minor fix

* Fix pretrained.py

* Update pretrained model & corresponding docs
2021-11-18 10:00:47 +08:00

163 lines
4.4 KiB
Bash
Executable File

#!/usr/bin/env bash
set -eou pipefail
nj=15
stage=-1
stop_stage=10
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/aishell
# You can find data_aishell, resource_aishell inside it.
# You can download them from https://www.openslr.org/33
#
# - $dl_dir/lm
# This directory contains the language model downloaded from
# https://huggingface.co/pkufool/aishell_lm
#
# - 3-gram.unpruned.apra
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "stage -1: Download LM"
# We assume that you have installed the git-lfs, if not, you could install it
# using: `sudo apt-get install git-lfs && git-lfs install`
[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
git clone https://huggingface.co/pkufool/aishell_lm $dl_dir/lm
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "stage 0: Download data"
# If you have pre-downloaded it to /path/to/aishell,
# you can create a symlink
#
# ln -sfv /path/to/aishell $dl_dir/aishell
#
# The directory structure is
# aishell/
# |-- data_aishell
# | |-- transcript
# | `-- wav
# `-- resource_aishell
# |-- lexicon.txt
# `-- speaker.info
if [ ! -d $dl_dir/aishell/data_aishell/wav ]; then
lhotse download aishell $dl_dir
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/musan
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare aishell manifest"
# We assume that you have downloaded the aishell corpus
# to $dl_dir/aishell
mkdir -p data/manifests
lhotse prepare aishell -j $nj $dl_dir/aishell data/manifests
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for aishell"
mkdir -p data/fbank
./local/compute_fbank_aishell.py
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
./local/compute_fbank_musan.py
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare phone based lang"
mkdir -p data/lang_phone
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
cat - $dl_dir/aishell/resource_aishell/lexicon.txt |
sort | uniq > data/lang_phone/lexicon.txt
if [ ! -f data/lang_phone/L_disambig.pt ]; then
./local/prepare_lang.py
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare char based lang"
mkdir -p data/lang_char
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
cp data/lang_phone/words.txt data/lang_char
cat $dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt |
cut -d " " -f 2- | sed -e 's/[ \t\r\n]*//g' > data/lang_char/text
if [ ! -f data/lang_char/L_disambig.pt ]; then
./local/prepare_char.py
fi
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Prepare G"
# We assume you have install kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
$dl_dir/lm/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt
fi
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Compile HLG"
./local/compile_hlg.py --lang-dir data/lang_phone
./local/compile_hlg.py --lang-dir data/lang_char
fi