icefall/egs/iwslt22_ta/ASR/prepare.sh
2023-11-01 05:31:43 +03:00

166 lines
4.9 KiB
Bash
Executable File

#!/usr/bin/env bash
# Copyright 2023 Johns Hopkins University (Amir Hussein)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
set -eou pipefail
nj=20
stage=1
stop_stage=4
# We assume dl_dir (download dir) contains the following
# directories and files.
#
# - $dl_dir/iwslt_ta
#
# You can download the data from
#
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
#
# Note: iwslt_ta is not available for direct
# download, "Download IWSLT Tunisian from LDC LDC2022E01. This script assumes you prepared the stm files"
#"Check the instructions to prepare the stm files from the raw data here https://github.com/kevinduh/iwslt22-dialect"
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
1000
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/iwslt_ta,
# you can create a symlink
#
# ln -sfv /path/to/iwslt_ta $dl_dir/iwslt_ta
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
fbank=data/fbank
manifests=data/manifests
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare iwslt manifest"
# We assume that you have downloaded the iwslt_ta corpus to $dl_dir/iwslt_ta
# Also git clone https://github.com/kevinduh/iwslt22-dialect
if [ ! -d "iwslt22-dialect" ]; then
echo "Splits directory (iwslt22-dialect) does not exist"
echo "Run git clone https://github.com/kevinduh/iwslt22-dialect"
exit 1
fi
manifests=data/manifests
mkdir -p $manifests
lhotse prepare iwslt_ta $dl_dir/iwslt_ta iwslt22-dialect data/manifests
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p $manifests
lhotse prepare musan $dl_dir/musan $manifests
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank features"
mkdir -p ${fbank}
python local/compute_fbank_gpu.py --num-splits 20
log "Combine features from train splits (may take ~1h)"
if [ ! -f $manifests/cuts_train.jsonl.gz ]; then
pieces=$(find $manifests -name "cuts_train_[0-9]*.jsonl.gz")
lhotse combine $pieces $manifests/cuts_train.jsonl.gz
fi
gunzip -c $manifests/cuts_train.jsonl.gz | shuf | gzip -c > ${fbank}/cuts_train_shuf.jsonl.gz
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p ${fbank}
./local/compute_fbank_musan.py
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare phone based lang"
lang_dir=data/lang_phone
if [ ! -f download/lm/train/transcript_words.txt ]; then
# export train text file to build grapheme lexicon
log "Creating transcripts in download/lm/train from lhotse cuts"
mkdir -p download/lm/train
python local/prepare_transcripts.py --cut ${fbank}/cuts_train_shuf.jsonl.gz --langdir download/lm/train
fi
mkdir -p $lang_dir
log "Prepare lexicon"
./local/prep_lexicon.sh download/lm/train
python local/prepare_lexicon.py $dl_dir/lm/train/words.txt $dl_dir/lm/train/lexicon.txt
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
cat - $dl_dir/lm/train/lexicon.txt |
sort | uniq > $lang_dir/lexicon.txt
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_dir
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p ${lang_dir}
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
cp data/lang_phone_src/words.txt $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate Tunisian text for BPE training from data/fbank/cuts_train_shuf.jsonl.gz"
python local/prepare_transcripts.py --cut ${fbank}/cuts_train_shuf.jsonl.gz --langdir ${ang_dir}
fi
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
fi
done
done
fi