mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
614 lines
20 KiB
Python
614 lines
20 KiB
Python
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
|
# Xiaoyu Yang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import warnings
|
|
from dataclasses import dataclass, field
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
import k2
|
|
import torch
|
|
|
|
from icefall.decode import one_best_decoding
|
|
from icefall.utils import DecodingResults, get_texts, get_texts_with_timestamp
|
|
|
|
|
|
def fast_beam_search(
|
|
model: torch.nn.Module,
|
|
decoding_graph: k2.Fsa,
|
|
encoder_out: torch.Tensor,
|
|
encoder_out_lens: torch.Tensor,
|
|
beam: float,
|
|
max_states: int,
|
|
max_contexts: int,
|
|
temperature: float = 1.0,
|
|
) -> k2.Fsa:
|
|
"""It limits the maximum number of symbols per frame to 1.
|
|
|
|
Args:
|
|
model:
|
|
An instance of `Transducer`.
|
|
decoding_graph:
|
|
Decoding graph used for decoding, may be a TrivialGraph or a LG.
|
|
encoder_out:
|
|
A tensor of shape (N, T, C) from the encoder.
|
|
encoder_out_lens:
|
|
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
|
before padding.
|
|
beam:
|
|
Beam value, similar to the beam used in Kaldi..
|
|
max_states:
|
|
Max states per stream per frame.
|
|
max_contexts:
|
|
Max contexts pre stream per frame.
|
|
temperature:
|
|
Softmax temperature.
|
|
Returns:
|
|
Return an FsaVec with axes [utt][state][arc] containing the decoded
|
|
lattice. Note: When the input graph is a TrivialGraph, the returned
|
|
lattice is actually an acceptor.
|
|
"""
|
|
assert encoder_out.ndim == 3
|
|
|
|
context_size = model.decoder.context_size
|
|
vocab_size = model.decoder.vocab_size
|
|
|
|
B, T, C = encoder_out.shape
|
|
|
|
config = k2.RnntDecodingConfig(
|
|
vocab_size=vocab_size,
|
|
decoder_history_len=context_size,
|
|
beam=beam,
|
|
max_contexts=max_contexts,
|
|
max_states=max_states,
|
|
)
|
|
individual_streams = []
|
|
for i in range(B):
|
|
individual_streams.append(k2.RnntDecodingStream(decoding_graph))
|
|
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
|
|
|
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
|
|
|
for t in range(T):
|
|
# shape is a RaggedShape of shape (B, context)
|
|
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
|
shape, contexts = decoding_streams.get_contexts()
|
|
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
|
contexts = contexts.to(torch.int64)
|
|
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
|
decoder_out = model.decoder(contexts, need_pad=False)
|
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
# current_encoder_out is of shape
|
|
# (shape.NumElements(), 1, joiner_dim)
|
|
# fmt: off
|
|
current_encoder_out = torch.index_select(
|
|
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
|
)
|
|
# fmt: on
|
|
logits = model.joiner(
|
|
current_encoder_out.unsqueeze(2),
|
|
decoder_out.unsqueeze(1),
|
|
project_input=False,
|
|
)
|
|
logits = logits.squeeze(1).squeeze(1)
|
|
log_probs = (logits / temperature).log_softmax(dim=-1)
|
|
decoding_streams.advance(log_probs)
|
|
decoding_streams.terminate_and_flush_to_streams()
|
|
lattice = decoding_streams.format_output(encoder_out_lens.tolist())
|
|
|
|
return lattice
|
|
|
|
|
|
def fast_beam_search_one_best(
|
|
model: torch.nn.Module,
|
|
decoding_graph: k2.Fsa,
|
|
encoder_out: torch.Tensor,
|
|
encoder_out_lens: torch.Tensor,
|
|
beam: float,
|
|
max_states: int,
|
|
max_contexts: int,
|
|
temperature: float = 1.0,
|
|
return_timestamps: bool = False,
|
|
) -> Union[List[List[int]], DecodingResults]:
|
|
"""It limits the maximum number of symbols per frame to 1.
|
|
|
|
A lattice is first obtained using fast beam search, and then
|
|
the shortest path within the lattice is used as the final output.
|
|
|
|
Args:
|
|
model:
|
|
An instance of `Transducer`.
|
|
decoding_graph:
|
|
Decoding graph used for decoding, may be a TrivialGraph or a LG.
|
|
encoder_out:
|
|
A tensor of shape (N, T, C) from the encoder.
|
|
encoder_out_lens:
|
|
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
|
before padding.
|
|
beam:
|
|
Beam value, similar to the beam used in Kaldi..
|
|
max_states:
|
|
Max states per stream per frame.
|
|
max_contexts:
|
|
Max contexts pre stream per frame.
|
|
temperature:
|
|
Softmax temperature.
|
|
return_timestamps:
|
|
Whether to return timestamps.
|
|
Returns:
|
|
If return_timestamps is False, return the decoded result.
|
|
Else, return a DecodingResults object containing
|
|
decoded result and corresponding timestamps.
|
|
"""
|
|
lattice = fast_beam_search(
|
|
model=model,
|
|
decoding_graph=decoding_graph,
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
beam=beam,
|
|
max_states=max_states,
|
|
max_contexts=max_contexts,
|
|
temperature=temperature,
|
|
)
|
|
|
|
best_path = one_best_decoding(lattice)
|
|
|
|
if not return_timestamps:
|
|
return get_texts(best_path)
|
|
else:
|
|
return get_texts_with_timestamp(best_path)
|
|
|
|
|
|
def greedy_search_batch(
|
|
model: torch.nn.Module,
|
|
encoder_out: torch.Tensor,
|
|
encoder_out_lens: torch.Tensor,
|
|
return_timestamps: bool = False,
|
|
) -> Union[List[List[int]], DecodingResults]:
|
|
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
|
Args:
|
|
model:
|
|
The transducer model.
|
|
encoder_out:
|
|
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
|
encoder_out_lens:
|
|
A 1-D tensor of shape (N,), containing number of valid frames in
|
|
encoder_out before padding.
|
|
return_timestamps:
|
|
Whether to return timestamps.
|
|
Returns:
|
|
If return_timestamps is False, return the decoded result.
|
|
Else, return a DecodingResults object containing
|
|
decoded result and corresponding timestamps.
|
|
"""
|
|
assert encoder_out.ndim == 3
|
|
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
|
|
|
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
|
input=encoder_out,
|
|
lengths=encoder_out_lens.cpu(),
|
|
batch_first=True,
|
|
enforce_sorted=False,
|
|
)
|
|
|
|
device = next(model.parameters()).device
|
|
|
|
blank_id = model.decoder.blank_id
|
|
unk_id = getattr(model, "unk_id", blank_id)
|
|
context_size = model.decoder.context_size
|
|
|
|
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
|
N = encoder_out.size(0)
|
|
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
|
assert N == batch_size_list[0], (N, batch_size_list)
|
|
|
|
hyps = [[-1] * (context_size - 1) + [blank_id] for _ in range(N)]
|
|
|
|
# timestamp[n][i] is the frame index after subsampling
|
|
# on which hyp[n][i] is decoded
|
|
timestamps = [[] for _ in range(N)]
|
|
# scores[n][i] is the logits on which hyp[n][i] is decoded
|
|
scores = [[] for _ in range(N)]
|
|
|
|
decoder_input = torch.tensor(
|
|
hyps,
|
|
device=device,
|
|
dtype=torch.int64,
|
|
) # (N, context_size)
|
|
|
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
# decoder_out: (N, 1, decoder_out_dim)
|
|
|
|
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
|
|
|
|
offset = 0
|
|
for t, batch_size in enumerate(batch_size_list):
|
|
start = offset
|
|
end = offset + batch_size
|
|
current_encoder_out = encoder_out.data[start:end]
|
|
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
|
|
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
|
offset = end
|
|
|
|
decoder_out = decoder_out[:batch_size]
|
|
|
|
logits = model.joiner(
|
|
current_encoder_out, decoder_out.unsqueeze(1), project_input=False
|
|
)
|
|
# logits'shape (batch_size, 1, 1, vocab_size)
|
|
|
|
logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size)
|
|
log_probs = logits.log_softmax(dim=-1)
|
|
assert log_probs.ndim == 2, log_probs.shape
|
|
y = log_probs.argmax(dim=1).tolist()
|
|
emitted = False
|
|
for i, v in enumerate(y):
|
|
if v not in (blank_id, unk_id):
|
|
hyps[i].append(v)
|
|
timestamps[i].append(t)
|
|
scores[i].append(log_probs[i, v].item())
|
|
emitted = True
|
|
if emitted:
|
|
# update decoder output
|
|
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
|
|
decoder_input = torch.tensor(
|
|
decoder_input,
|
|
device=device,
|
|
dtype=torch.int64,
|
|
)
|
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
|
|
sorted_ans = [h[context_size:] for h in hyps]
|
|
ans = []
|
|
ans_timestamps = []
|
|
ans_scores = []
|
|
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
|
for i in range(N):
|
|
ans.append(sorted_ans[unsorted_indices[i]])
|
|
ans_timestamps.append(timestamps[unsorted_indices[i]])
|
|
ans_scores.append(scores[unsorted_indices[i]])
|
|
|
|
if not return_timestamps:
|
|
return ans
|
|
else:
|
|
return DecodingResults(
|
|
hyps=ans,
|
|
timestamps=ans_timestamps,
|
|
scores=ans_scores,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class Hypothesis:
|
|
# The predicted tokens so far.
|
|
# Newly predicted tokens are appended to `ys`.
|
|
ys: List[int]
|
|
|
|
# The log prob of ys.
|
|
# It contains only one entry.
|
|
log_prob: torch.Tensor
|
|
|
|
# timestamp[i] is the frame index after subsampling
|
|
# on which ys[i] is decoded
|
|
timestamp: List[int] = field(default_factory=list)
|
|
|
|
@property
|
|
def key(self) -> str:
|
|
"""Return a string representation of self.ys"""
|
|
return "_".join(map(str, self.ys))
|
|
|
|
|
|
class HypothesisList(object):
|
|
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
|
|
"""
|
|
Args:
|
|
data:
|
|
A dict of Hypotheses. Its key is its `value.key`.
|
|
"""
|
|
if data is None:
|
|
self._data = {}
|
|
else:
|
|
self._data = data
|
|
|
|
@property
|
|
def data(self) -> Dict[str, Hypothesis]:
|
|
return self._data
|
|
|
|
def add(self, hyp: Hypothesis) -> None:
|
|
"""Add a Hypothesis to `self`.
|
|
|
|
If `hyp` already exists in `self`, its probability is updated using
|
|
`log-sum-exp` with the existed one.
|
|
|
|
Args:
|
|
hyp:
|
|
The hypothesis to be added.
|
|
"""
|
|
key = hyp.key
|
|
if key in self:
|
|
old_hyp = self._data[key] # shallow copy
|
|
torch.logaddexp(old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob)
|
|
else:
|
|
self._data[key] = hyp
|
|
|
|
def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
|
|
"""Get the most probable hypothesis, i.e., the one with
|
|
the largest `log_prob`.
|
|
|
|
Args:
|
|
length_norm:
|
|
If True, the `log_prob` of a hypothesis is normalized by the
|
|
number of tokens in it.
|
|
Returns:
|
|
Return the hypothesis that has the largest `log_prob`.
|
|
"""
|
|
if length_norm:
|
|
return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys))
|
|
else:
|
|
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
|
|
|
|
def remove(self, hyp: Hypothesis) -> None:
|
|
"""Remove a given hypothesis.
|
|
|
|
Caution:
|
|
`self` is modified **in-place**.
|
|
|
|
Args:
|
|
hyp:
|
|
The hypothesis to be removed from `self`.
|
|
Note: It must be contained in `self`. Otherwise,
|
|
an exception is raised.
|
|
"""
|
|
key = hyp.key
|
|
assert key in self, f"{key} does not exist"
|
|
del self._data[key]
|
|
|
|
def filter(self, threshold: torch.Tensor) -> "HypothesisList":
|
|
"""Remove all Hypotheses whose log_prob is less than threshold.
|
|
|
|
Caution:
|
|
`self` is not modified. Instead, a new HypothesisList is returned.
|
|
|
|
Returns:
|
|
Return a new HypothesisList containing all hypotheses from `self`
|
|
with `log_prob` being greater than the given `threshold`.
|
|
"""
|
|
ans = HypothesisList()
|
|
for _, hyp in self._data.items():
|
|
if hyp.log_prob > threshold:
|
|
ans.add(hyp) # shallow copy
|
|
return ans
|
|
|
|
def topk(self, k: int) -> "HypothesisList":
|
|
"""Return the top-k hypothesis."""
|
|
hyps = list(self._data.items())
|
|
|
|
hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
|
|
|
|
ans = HypothesisList(dict(hyps))
|
|
return ans
|
|
|
|
def __contains__(self, key: str):
|
|
return key in self._data
|
|
|
|
def __iter__(self):
|
|
return iter(self._data.values())
|
|
|
|
def __len__(self) -> int:
|
|
return len(self._data)
|
|
|
|
def __str__(self) -> str:
|
|
s = []
|
|
for key in self:
|
|
s.append(key)
|
|
return ", ".join(s)
|
|
|
|
|
|
def get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
|
|
"""Return a ragged shape with axes [utt][num_hyps].
|
|
|
|
Args:
|
|
hyps:
|
|
len(hyps) == batch_size. It contains the current hypothesis for
|
|
each utterance in the batch.
|
|
Returns:
|
|
Return a ragged shape with 2 axes [utt][num_hyps]. Note that
|
|
the shape is on CPU.
|
|
"""
|
|
num_hyps = [len(h) for h in hyps]
|
|
|
|
# torch.cumsum() is inclusive sum, so we put a 0 at the beginning
|
|
# to get exclusive sum later.
|
|
num_hyps.insert(0, 0)
|
|
|
|
num_hyps = torch.tensor(num_hyps)
|
|
row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32)
|
|
ans = k2.ragged.create_ragged_shape2(
|
|
row_splits=row_splits, cached_tot_size=row_splits[-1].item()
|
|
)
|
|
return ans
|
|
|
|
|
|
def modified_beam_search(
|
|
model: torch.nn.Module,
|
|
encoder_out: torch.Tensor,
|
|
encoder_out_lens: torch.Tensor,
|
|
beam: int = 4,
|
|
temperature: float = 1.0,
|
|
return_timestamps: bool = False,
|
|
) -> Union[List[List[int]], DecodingResults]:
|
|
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
|
|
|
Args:
|
|
model:
|
|
The transducer model.
|
|
encoder_out:
|
|
Output from the encoder. Its shape is (N, T, C).
|
|
encoder_out_lens:
|
|
A 1-D tensor of shape (N,), containing number of valid frames in
|
|
encoder_out before padding.
|
|
beam:
|
|
Number of active paths during the beam search.
|
|
temperature:
|
|
Softmax temperature.
|
|
return_timestamps:
|
|
Whether to return timestamps.
|
|
Returns:
|
|
If return_timestamps is False, return the decoded result.
|
|
Else, return a DecodingResults object containing
|
|
decoded result and corresponding timestamps.
|
|
"""
|
|
assert encoder_out.ndim == 3, encoder_out.shape
|
|
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
|
|
|
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
|
input=encoder_out,
|
|
lengths=encoder_out_lens.cpu(),
|
|
batch_first=True,
|
|
enforce_sorted=False,
|
|
)
|
|
|
|
blank_id = model.decoder.blank_id
|
|
unk_id = getattr(model, "unk_id", blank_id)
|
|
context_size = model.decoder.context_size
|
|
device = next(model.parameters()).device
|
|
|
|
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
|
N = encoder_out.size(0)
|
|
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
|
assert N == batch_size_list[0], (N, batch_size_list)
|
|
|
|
B = [HypothesisList() for _ in range(N)]
|
|
for i in range(N):
|
|
B[i].add(
|
|
Hypothesis(
|
|
ys=[blank_id] * context_size,
|
|
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
|
timestamp=[],
|
|
)
|
|
)
|
|
|
|
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
|
|
|
|
offset = 0
|
|
finalized_B = []
|
|
for t, batch_size in enumerate(batch_size_list):
|
|
start = offset
|
|
end = offset + batch_size
|
|
current_encoder_out = encoder_out.data[start:end]
|
|
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
|
|
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
|
|
offset = end
|
|
|
|
finalized_B = B[batch_size:] + finalized_B
|
|
B = B[:batch_size]
|
|
|
|
hyps_shape = get_hyps_shape(B).to(device)
|
|
|
|
A = [list(b) for b in B]
|
|
B = [HypothesisList() for _ in range(batch_size)]
|
|
|
|
ys_log_probs = torch.cat(
|
|
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
|
|
) # (num_hyps, 1)
|
|
|
|
decoder_input = torch.tensor(
|
|
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
|
device=device,
|
|
dtype=torch.int64,
|
|
) # (num_hyps, context_size)
|
|
|
|
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
# decoder_out is of shape (num_hyps, 1, 1, joiner_dim)
|
|
|
|
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
|
# as index, so we use `to(torch.int64)` below.
|
|
current_encoder_out = torch.index_select(
|
|
current_encoder_out,
|
|
dim=0,
|
|
index=hyps_shape.row_ids(1).to(torch.int64),
|
|
) # (num_hyps, 1, 1, encoder_out_dim)
|
|
|
|
logits = model.joiner(
|
|
current_encoder_out,
|
|
decoder_out,
|
|
project_input=False,
|
|
) # (num_hyps, 1, 1, vocab_size)
|
|
|
|
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
|
|
|
|
log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size)
|
|
|
|
log_probs.add_(ys_log_probs)
|
|
|
|
vocab_size = log_probs.size(-1)
|
|
|
|
log_probs = log_probs.reshape(-1)
|
|
|
|
row_splits = hyps_shape.row_splits(1) * vocab_size
|
|
log_probs_shape = k2.ragged.create_ragged_shape2(
|
|
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
|
)
|
|
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
|
|
|
|
for i in range(batch_size):
|
|
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
|
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
|
|
|
for k in range(len(topk_hyp_indexes)):
|
|
hyp_idx = topk_hyp_indexes[k]
|
|
hyp = A[i][hyp_idx]
|
|
|
|
new_ys = hyp.ys[:]
|
|
new_token = topk_token_indexes[k]
|
|
new_timestamp = hyp.timestamp[:]
|
|
if new_token not in (blank_id, unk_id):
|
|
new_ys.append(new_token)
|
|
new_timestamp.append(t)
|
|
|
|
new_log_prob = topk_log_probs[k]
|
|
new_hyp = Hypothesis(
|
|
ys=new_ys, log_prob=new_log_prob, timestamp=new_timestamp
|
|
)
|
|
B[i].add(new_hyp)
|
|
|
|
B = B + finalized_B
|
|
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
|
|
|
|
sorted_ans = [h.ys[context_size:] for h in best_hyps]
|
|
sorted_timestamps = [h.timestamp for h in best_hyps]
|
|
ans = []
|
|
ans_timestamps = []
|
|
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
|
for i in range(N):
|
|
ans.append(sorted_ans[unsorted_indices[i]])
|
|
ans_timestamps.append(sorted_timestamps[unsorted_indices[i]])
|
|
|
|
if not return_timestamps:
|
|
return ans
|
|
else:
|
|
return DecodingResults(
|
|
hyps=ans,
|
|
timestamps=ans_timestamps,
|
|
)
|