mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* add init files * fix bug, apply delay penalty * fix decoding code and getting timestamps * add option applying delay penalty on ctc log-prob * fix bug of streaming decoding * minor change for bpe-based case * add test_model.py * add README.md * add CI
293 lines
9.0 KiB
Python
Executable File
293 lines
9.0 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# This script converts several saved checkpoints
|
|
# to a single one using model averaging.
|
|
"""
|
|
Usage:
|
|
|
|
(1) Export to torchscript model using torch.jit.trace()
|
|
|
|
./conformer_ctc3/export.py \
|
|
--exp-dir ./conformer_ctc3/exp \
|
|
--lang-dir data/lang_bpe_500 \
|
|
--epoch 20 \
|
|
--avg 10 \
|
|
--jit-trace 1
|
|
|
|
It will generates the file: `jit_trace.pt`.
|
|
|
|
(2) Export `model.state_dict()`
|
|
|
|
./conformer_ctc3/export.py \
|
|
--exp-dir ./conformer_ctc3/exp \
|
|
--lang-dir data/lang_bpe_500 \
|
|
--epoch 20 \
|
|
--avg 10
|
|
|
|
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
|
|
load it by `icefall.checkpoint.load_checkpoint()`.
|
|
|
|
To use the generated file with `conformer_ctc3/decode.py`,
|
|
you can do:
|
|
|
|
cd /path/to/exp_dir
|
|
ln -s pretrained.pt epoch-9999.pt
|
|
|
|
cd /path/to/egs/librispeech/ASR
|
|
./conformer_ctc3/decode.py \
|
|
--exp-dir ./conformer_ctc3/exp \
|
|
--epoch 9999 \
|
|
--avg 1 \
|
|
--max-duration 100 \
|
|
--lang-dir data/lang_bpe_500
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from scaling_converter import convert_scaled_to_non_scaled
|
|
from train import add_model_arguments, get_ctc_model, get_params
|
|
|
|
from icefall.checkpoint import (
|
|
average_checkpoints,
|
|
average_checkpoints_with_averaged_model,
|
|
find_checkpoints,
|
|
load_checkpoint,
|
|
)
|
|
from icefall.lexicon import Lexicon
|
|
from icefall.utils import str2bool
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=28,
|
|
help="""It specifies the checkpoint to use for averaging.
|
|
Note: Epoch counts from 0.
|
|
You can specify --avg to use more checkpoints for model averaging.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=15,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch' and '--iter'",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-averaged-model",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to load averaged model. Currently it only supports "
|
|
"using --epoch. If True, it would decode with the averaged model "
|
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
"Actually only the models with epoch number of `epoch-avg` and "
|
|
"`epoch` are loaded for averaging. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="pruned_transducer_stateless4/exp",
|
|
help="""It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lang-dir",
|
|
type=Path,
|
|
default="data/lang_bpe_500",
|
|
help="The lang dir containing word table and LG graph",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--jit-trace",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""True to save a model after applying torch.jit.script.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--streaming-model",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""Whether to export a streaming model, if the models in exp-dir
|
|
are streaming model, this should be True.
|
|
""",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def main():
|
|
args = get_parser().parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
lexicon = Lexicon(params.lang_dir)
|
|
max_token_id = max(lexicon.tokens)
|
|
num_classes = max_token_id + 1 # +1 for the blank
|
|
params.vocab_size = num_classes
|
|
|
|
if params.streaming_model:
|
|
assert params.causal_convolution
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_ctc_model(params)
|
|
|
|
model.to(device)
|
|
|
|
if not params.use_averaged_model:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if i >= 1:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
else:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg + 1
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg + 1:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
filename_start = filenames[-1]
|
|
filename_end = filenames[0]
|
|
logging.info(
|
|
"Calculating the averaged model over iteration checkpoints"
|
|
f" from {filename_start} (excluded) to {filename_end}"
|
|
)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
else:
|
|
assert params.avg > 0, params.avg
|
|
start = params.epoch - params.avg
|
|
assert start >= 1, start
|
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
logging.info(
|
|
f"Calculating the averaged model over epoch range from "
|
|
f"{start} (excluded) to {params.epoch}"
|
|
)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
|
|
model.to("cpu")
|
|
model.eval()
|
|
|
|
if params.jit_trace:
|
|
# TODO: will support streaming mode
|
|
assert not params.streaming_model
|
|
convert_scaled_to_non_scaled(model, inplace=True)
|
|
|
|
logging.info("Using torch.jit.trace()")
|
|
|
|
x = torch.zeros(1, 100, 80, dtype=torch.float32)
|
|
x_lens = torch.tensor([100], dtype=torch.int64)
|
|
traced_model = torch.jit.trace(model, (x, x_lens))
|
|
|
|
filename = params.exp_dir / "jit_trace.pt"
|
|
traced_model.save(str(filename))
|
|
logging.info(f"Saved to {filename}")
|
|
else:
|
|
logging.info("Not using torch.jit.trace()")
|
|
# Save it using a format so that it can be loaded
|
|
# by :func:`load_checkpoint`
|
|
filename = params.exp_dir / "pretrained.pt"
|
|
torch.save({"model": model.state_dict()}, str(filename))
|
|
logging.info(f"Saved to {filename}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|