mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-11 02:52:18 +00:00
update Update ssl_datamodule.py Update pretrain.py Update pretrain.sh Update pretrain.sh Update hubert_ce.py Update pretrain.py
154 lines
4.8 KiB
Python
154 lines
4.8 KiB
Python
# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang,
|
|
# Wei Kang,
|
|
# Zengwei Yao,
|
|
# Yifan Yang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Optional, Tuple
|
|
|
|
import k2
|
|
import torch
|
|
import torch.nn as nn
|
|
from scaling import ScaledLinear
|
|
|
|
from icefall.utils import add_sos
|
|
|
|
|
|
class AsrModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
encoder,
|
|
encoder_dim: int = 768,
|
|
vocab_size: int = 500,
|
|
):
|
|
"""CTC ASR model.
|
|
|
|
- Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks (http://imagine.enpc.fr/~obozinsg/teaching/mva_gm/papers/ctc.pdf)
|
|
|
|
Args:
|
|
encoder:
|
|
It is the transcription network in the paper. Its accepts
|
|
inputs: `x` of (N, T, encoder_dim).
|
|
It returns two tensors: `logits` of shape (N, T, encoder_dim) and
|
|
`logit_lens` of shape (N,).
|
|
"""
|
|
super().__init__()
|
|
|
|
self.encoder = encoder
|
|
|
|
# Modules for CTC head
|
|
self.ctc_output = nn.Sequential(
|
|
nn.Dropout(p=0.1),
|
|
nn.Linear(encoder_dim, vocab_size),
|
|
nn.LogSoftmax(dim=-1),
|
|
)
|
|
|
|
def forward_encoder(
|
|
self,
|
|
x: torch.Tensor,
|
|
padding_mask: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Compute encoder outputs.
|
|
Args:
|
|
x:
|
|
A 2-D tensor of shape (N, T).
|
|
|
|
Returns:
|
|
encoder_out:
|
|
Encoder output, of shape (N, T, C).
|
|
encoder_out_lens:
|
|
Encoder output lengths, of shape (N,).
|
|
"""
|
|
if padding_mask is None:
|
|
padding_mask = torch.zeros_like(x, dtype=torch.bool)
|
|
|
|
encoder_out, padding_mask = self.encoder.extract_features(
|
|
source=x,
|
|
padding_mask=padding_mask,
|
|
mask=self.encoder.training,
|
|
)
|
|
encoder_out_lens = torch.sum(~padding_mask, dim=1)
|
|
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
|
|
|
return encoder_out, encoder_out_lens
|
|
|
|
def forward_ctc(
|
|
self,
|
|
encoder_out: torch.Tensor,
|
|
encoder_out_lens: torch.Tensor,
|
|
targets: torch.Tensor,
|
|
target_lengths: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""Compute CTC loss.
|
|
Args:
|
|
encoder_out:
|
|
Encoder output, of shape (N, T, C).
|
|
encoder_out_lens:
|
|
Encoder output lengths, of shape (N,).
|
|
targets:
|
|
Target Tensor of shape (sum(target_lengths)). The targets are assumed
|
|
to be un-padded and concatenated within 1 dimension.
|
|
"""
|
|
# Compute CTC log-prob
|
|
ctc_output = self.ctc_output(encoder_out) # (N, T, C)
|
|
|
|
ctc_loss = torch.nn.functional.ctc_loss(
|
|
log_probs=ctc_output.permute(1, 0, 2), # (T, N, C)
|
|
targets=targets.cpu(),
|
|
input_lengths=encoder_out_lens.cpu(),
|
|
target_lengths=target_lengths.cpu(),
|
|
reduction="sum",
|
|
)
|
|
return ctc_loss
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
y: k2.RaggedTensor,
|
|
padding_mask: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Args:
|
|
x:
|
|
A 2-D tensor of shape (N, T).
|
|
y:
|
|
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
|
utterance.
|
|
Returns:
|
|
Return the CTC loss,
|
|
"""
|
|
assert x.ndim == 2, x.shape
|
|
assert y.num_axes == 2, y.num_axes
|
|
|
|
assert x.size(0) == y.dim0, (x.shape, y.dim0)
|
|
|
|
# Compute encoder outputs
|
|
encoder_out, encoder_out_lens = self.forward_encoder(x, padding_mask)
|
|
|
|
row_splits = y.shape.row_splits(1)
|
|
y_lens = row_splits[1:] - row_splits[:-1]
|
|
|
|
# Compute CTC loss
|
|
targets = y.values
|
|
ctc_loss = self.forward_ctc(
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
targets=targets,
|
|
target_lengths=y_lens,
|
|
)
|
|
|
|
return ctc_loss, encoder_out_lens
|