icefall/installation/index.html

660 lines
77 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html class="writer-html5" lang="en">
<head>
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Installation &mdash; icefall 0.1 documentation</title>
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=fa44fd50" />
<link rel="stylesheet" type="text/css" href="../_static/css/theme.css?v=19f00094" />
<!--[if lt IE 9]>
<script src="../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script src="../_static/jquery.js?v=5d32c60e"></script>
<script src="../_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js?v=e031e9a9"></script>
<script src="../_static/doctools.js?v=888ff710"></script>
<script src="../_static/sphinx_highlight.js?v=4825356b"></script>
<script src="../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Docker" href="../docker/index.html" />
<link rel="prev" title="Model Export" href="../for-dummies/model-export.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../index.html" class="icon icon-home">
icefall
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<p class="caption" role="heading"><span class="caption-text">Contents:</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../for-dummies/index.html">Icefall for dummies tutorial</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Installation</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#install-cuda-toolkit-and-cudnn">(0) Install CUDA toolkit and cuDNN</a></li>
<li class="toctree-l2"><a class="reference internal" href="#install-torch-and-torchaudio">(1) Install torch and torchaudio</a></li>
<li class="toctree-l2"><a class="reference internal" href="#install-k2">(2) Install k2</a></li>
<li class="toctree-l2"><a class="reference internal" href="#install-lhotse">(3) Install lhotse</a></li>
<li class="toctree-l2"><a class="reference internal" href="#download-icefall">(4) Download icefall</a></li>
<li class="toctree-l2"><a class="reference internal" href="#installation-example">Installation example</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#create-a-virtual-environment">(1) Create a virtual environment</a></li>
<li class="toctree-l3"><a class="reference internal" href="#id1">(2) Install CUDA toolkit and cuDNN</a></li>
<li class="toctree-l3"><a class="reference internal" href="#id2">(3) Install torch and torchaudio</a></li>
<li class="toctree-l3"><a class="reference internal" href="#id3">(4) Install k2</a></li>
<li class="toctree-l3"><a class="reference internal" href="#id5">(5) Install lhotse</a></li>
<li class="toctree-l3"><a class="reference internal" href="#id6">(6) Download icefall</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#test-your-installation">Test Your Installation</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#data-preparation">Data preparation</a></li>
<li class="toctree-l3"><a class="reference internal" href="#training">Training</a></li>
<li class="toctree-l3"><a class="reference internal" href="#decoding">Decoding</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#youtube-video">YouTube Video</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../docker/index.html">Docker</a></li>
<li class="toctree-l1"><a class="reference internal" href="../faqs.html">Frequently Asked Questions (FAQs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model-export/index.html">Model export</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fst-based-forced-alignment/index.html">FST-based forced alignment</a></li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../recipes/index.html">Recipes</a></li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../contributing/index.html">Contributing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../huggingface/index.html">Huggingface</a></li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../decoding-with-langugage-models/index.html">Decoding with language models</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../index.html">icefall</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="../index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item active">Installation</li>
<li class="wy-breadcrumbs-aside">
<a href="https://github.com/k2-fsa/icefall/blob/master/docs/source/installation/index.rst" class="fa fa-github"> Edit on GitHub</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="installation">
<span id="install-icefall"></span><h1>Installation<a class="headerlink" href="#installation" title="Permalink to this heading"></a></h1>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p>We also provide <a class="reference internal" href="../docker/index.html#icefall-docker"><span class="std std-ref">Docker</span></a> support, which has already setup
the environment for you.</p>
</div>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p>We have a colab notebook guiding you step by step to setup the environment.</p>
<p><a class="reference external" href="https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing"><img alt="yesno colab notebook" src="https://colab.research.google.com/assets/colab-badge.svg" /></a></p>
</div>
<p><a class="reference external" href="https://github.com/k2-fsa/icefall">icefall</a> depends on <a class="reference external" href="https://github.com/k2-fsa/k2">k2</a> and <a class="reference external" href="https://github.com/lhotse-speech/lhotse">lhotse</a>.</p>
<p>We recommend that you use the following steps to install the dependencies.</p>
<ul class="simple">
<li><ol class="arabic simple" start="0">
<li><p>Install CUDA toolkit and cuDNN</p></li>
</ol>
</li>
<li><ol class="arabic simple">
<li><p>Install <a class="reference external" href="https://github.com/pytorch/pytorch">torch</a> and <a class="reference external" href="https://github.com/pytorch/audio">torchaudio</a></p></li>
</ol>
</li>
<li><ol class="arabic simple" start="2">
<li><p>Install <a class="reference external" href="https://github.com/k2-fsa/k2">k2</a></p></li>
</ol>
</li>
<li><ol class="arabic simple" start="3">
<li><p>Install <a class="reference external" href="https://github.com/lhotse-speech/lhotse">lhotse</a></p></li>
</ol>
</li>
</ul>
<div class="admonition caution">
<p class="admonition-title">Caution</p>
<p>Installation order matters.</p>
</div>
<section id="install-cuda-toolkit-and-cudnn">
<h2>(0) Install CUDA toolkit and cuDNN<a class="headerlink" href="#install-cuda-toolkit-and-cudnn" title="Permalink to this heading"></a></h2>
<p>Please refer to
<a class="reference external" href="https://k2-fsa.github.io/k2/installation/cuda-cudnn.html">https://k2-fsa.github.io/k2/installation/cuda-cudnn.html</a>
to install CUDA and cuDNN.</p>
</section>
<section id="install-torch-and-torchaudio">
<h2>(1) Install torch and torchaudio<a class="headerlink" href="#install-torch-and-torchaudio" title="Permalink to this heading"></a></h2>
<p>Please refer <a class="reference external" href="https://pytorch.org/">https://pytorch.org/</a> to install <a class="reference external" href="https://github.com/pytorch/pytorch">torch</a> and <a class="reference external" href="https://github.com/pytorch/audio">torchaudio</a>.</p>
<div class="admonition caution">
<p class="admonition-title">Caution</p>
<p>Please install torch and torchaudio at the same time.</p>
</div>
</section>
<section id="install-k2">
<h2>(2) Install k2<a class="headerlink" href="#install-k2" title="Permalink to this heading"></a></h2>
<p>Please refer to <a class="reference external" href="https://k2-fsa.github.io/k2/installation/index.html">https://k2-fsa.github.io/k2/installation/index.html</a>
to install <a class="reference external" href="https://github.com/k2-fsa/k2">k2</a>.</p>
<div class="admonition caution">
<p class="admonition-title">Caution</p>
<p>Please dont change your installed PyTorch after you have installed k2.</p>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>We suggest that you install k2 from pre-compiled wheels by following
<a class="reference external" href="https://k2-fsa.github.io/k2/installation/from_wheels.html">https://k2-fsa.github.io/k2/installation/from_wheels.html</a></p>
</div>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p>Please always install the latest version of <a class="reference external" href="https://github.com/k2-fsa/k2">k2</a>.</p>
</div>
</section>
<section id="install-lhotse">
<h2>(3) Install lhotse<a class="headerlink" href="#install-lhotse" title="Permalink to this heading"></a></h2>
<p>Please refer to <a class="reference external" href="https://lhotse.readthedocs.io/en/latest/getting-started.html#installation">https://lhotse.readthedocs.io/en/latest/getting-started.html#installation</a>
to install <a class="reference external" href="https://github.com/lhotse-speech/lhotse">lhotse</a>.</p>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p>We strongly recommend you to use:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">pip</span> <span class="n">install</span> <span class="n">git</span><span class="o">+</span><span class="n">https</span><span class="p">:</span><span class="o">//</span><span class="n">github</span><span class="o">.</span><span class="n">com</span><span class="o">/</span><span class="n">lhotse</span><span class="o">-</span><span class="n">speech</span><span class="o">/</span><span class="n">lhotse</span>
</pre></div>
</div>
<p>to install the latest version of <a class="reference external" href="https://github.com/lhotse-speech/lhotse">lhotse</a>.</p>
</div>
</section>
<section id="download-icefall">
<h2>(4) Download icefall<a class="headerlink" href="#download-icefall" title="Permalink to this heading"></a></h2>
<p><a class="reference external" href="https://github.com/k2-fsa/icefall">icefall</a> is a collection of Python scripts; what you need is to download it
and set the environment variable <code class="docutils literal notranslate"><span class="pre">PYTHONPATH</span></code> to point to it.</p>
<p>Assume you want to place <a class="reference external" href="https://github.com/k2-fsa/icefall">icefall</a> in the folder <code class="docutils literal notranslate"><span class="pre">/tmp</span></code>. The
following commands show you how to setup <a class="reference external" href="https://github.com/k2-fsa/icefall">icefall</a>:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="nb">cd</span><span class="w"> </span>/tmp
git<span class="w"> </span>clone<span class="w"> </span>https://github.com/k2-fsa/icefall
<span class="nb">cd</span><span class="w"> </span>icefall
pip<span class="w"> </span>install<span class="w"> </span>-r<span class="w"> </span>requirements.txt
<span class="nb">export</span><span class="w"> </span><span class="nv">PYTHONPATH</span><span class="o">=</span>/tmp/icefall:<span class="nv">$PYTHONPATH</span>
</pre></div>
</div>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p>You can put several versions of <a class="reference external" href="https://github.com/k2-fsa/icefall">icefall</a> in the same virtual environment.
To switch among different versions of <a class="reference external" href="https://github.com/k2-fsa/icefall">icefall</a>, just set <code class="docutils literal notranslate"><span class="pre">PYTHONPATH</span></code>
to point to the version you want.</p>
</div>
</section>
<section id="installation-example">
<h2>Installation example<a class="headerlink" href="#installation-example" title="Permalink to this heading"></a></h2>
<p>The following shows an example about setting up the environment.</p>
<section id="create-a-virtual-environment">
<h3>(1) Create a virtual environment<a class="headerlink" href="#create-a-virtual-environment" title="Permalink to this heading"></a></h3>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>kuangfangjun:~$<span class="w"> </span>virtualenv<span class="w"> </span>-p<span class="w"> </span>python3.8<span class="w"> </span>test-icefall
created<span class="w"> </span>virtual<span class="w"> </span>environment<span class="w"> </span>CPython3.8.0.final.0-64<span class="w"> </span><span class="k">in</span><span class="w"> </span>9422ms
<span class="w"> </span>creator<span class="w"> </span>CPython3Posix<span class="o">(</span><span class="nv">dest</span><span class="o">=</span>/star-fj/fangjun/test-icefall,<span class="w"> </span><span class="nv">clear</span><span class="o">=</span>False,<span class="w"> </span><span class="nv">no_vcs_ignore</span><span class="o">=</span>False,<span class="w"> </span><span class="nv">global</span><span class="o">=</span>False<span class="o">)</span>
<span class="w"> </span>seeder<span class="w"> </span>FromAppData<span class="o">(</span><span class="nv">download</span><span class="o">=</span>False,<span class="w"> </span><span class="nv">pip</span><span class="o">=</span>bundle,<span class="w"> </span><span class="nv">setuptools</span><span class="o">=</span>bundle,<span class="w"> </span><span class="nv">wheel</span><span class="o">=</span>bundle,<span class="w"> </span><span class="nv">via</span><span class="o">=</span>copy,<span class="w"> </span><span class="nv">app_data_dir</span><span class="o">=</span>/star-fj/fangjun/.local/share/virtualenv<span class="o">)</span>
<span class="w"> </span>added<span class="w"> </span>seed<span class="w"> </span>packages:<span class="w"> </span><span class="nv">pip</span><span class="o">==</span><span class="m">22</span>.3.1,<span class="w"> </span><span class="nv">setuptools</span><span class="o">==</span><span class="m">65</span>.6.3,<span class="w"> </span><span class="nv">wheel</span><span class="o">==</span><span class="m">0</span>.38.4
<span class="w"> </span>activators<span class="w"> </span>BashActivator,CShellActivator,FishActivator,NushellActivator,PowerShellActivator,PythonActivator
kuangfangjun:~$<span class="w"> </span><span class="nb">source</span><span class="w"> </span>test-icefall/bin/activate
<span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:~$
</pre></div>
</div>
</section>
<section id="id1">
<h3>(2) Install CUDA toolkit and cuDNN<a class="headerlink" href="#id1" title="Permalink to this heading"></a></h3>
<p>You need to determine the version of CUDA toolkit to install.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:~$<span class="w"> </span>nvidia-smi<span class="w"> </span><span class="p">|</span><span class="w"> </span>head<span class="w"> </span>-n<span class="w"> </span><span class="m">4</span>
Wed<span class="w"> </span>Jul<span class="w"> </span><span class="m">26</span><span class="w"> </span><span class="m">21</span>:57:49<span class="w"> </span><span class="m">2023</span>
+-----------------------------------------------------------------------------+
<span class="p">|</span><span class="w"> </span>NVIDIA-SMI<span class="w"> </span><span class="m">510</span>.47.03<span class="w"> </span>Driver<span class="w"> </span>Version:<span class="w"> </span><span class="m">510</span>.47.03<span class="w"> </span>CUDA<span class="w"> </span>Version:<span class="w"> </span><span class="m">11</span>.6<span class="w"> </span><span class="p">|</span>
<span class="p">|</span>-------------------------------+----------------------+----------------------+
</pre></div>
</div>
<p>You can choose any CUDA version that is <code class="docutils literal notranslate"><span class="pre">not</span></code> greater than the version printed by <code class="docutils literal notranslate"><span class="pre">nvidia-smi</span></code>.
In our case, we can choose any version <code class="docutils literal notranslate"><span class="pre">&lt;=</span> <span class="pre">11.6</span></code>.</p>
<p>We will use <code class="docutils literal notranslate"><span class="pre">CUDA</span> <span class="pre">11.6</span></code> in this example. Please follow
<a class="reference external" href="https://k2-fsa.github.io/k2/installation/cuda-cudnn.html#cuda-11-6">https://k2-fsa.github.io/k2/installation/cuda-cudnn.html#cuda-11-6</a>
to install CUDA toolkit and cuDNN if you have not done that before.</p>
<p>After installing CUDA toolkit, you can use the following command to verify it:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:~$<span class="w"> </span>nvcc<span class="w"> </span>--version
nvcc:<span class="w"> </span>NVIDIA<span class="w"> </span><span class="o">(</span>R<span class="o">)</span><span class="w"> </span>Cuda<span class="w"> </span>compiler<span class="w"> </span>driver
Copyright<span class="w"> </span><span class="o">(</span>c<span class="o">)</span><span class="w"> </span><span class="m">2005</span>-2019<span class="w"> </span>NVIDIA<span class="w"> </span>Corporation
Built<span class="w"> </span>on<span class="w"> </span>Wed_Oct_23_19:24:38_PDT_2019
Cuda<span class="w"> </span>compilation<span class="w"> </span>tools,<span class="w"> </span>release<span class="w"> </span><span class="m">10</span>.2,<span class="w"> </span>V10.2.89
</pre></div>
</div>
</section>
<section id="id2">
<h3>(3) Install torch and torchaudio<a class="headerlink" href="#id2" title="Permalink to this heading"></a></h3>
<p>Since we have selected CUDA toolkit <code class="docutils literal notranslate"><span class="pre">11.6</span></code>, we have to install a version of <a class="reference external" href="https://github.com/pytorch/pytorch">torch</a>
that is compiled against CUDA <code class="docutils literal notranslate"><span class="pre">11.6</span></code>. We select <code class="docutils literal notranslate"><span class="pre">torch</span> <span class="pre">1.13.0+cu116</span></code> in this
example.</p>
<p>After selecting the version of <a class="reference external" href="https://github.com/pytorch/pytorch">torch</a> to install, we need to also install
a compatible version of <a class="reference external" href="https://github.com/pytorch/audio">torchaudio</a>, which is <code class="docutils literal notranslate"><span class="pre">0.13.0+cu116</span></code> in our case.</p>
<p>Please refer to <a class="reference external" href="https://pytorch.org/audio/stable/installation.html#compatibility-matrix">https://pytorch.org/audio/stable/installation.html#compatibility-matrix</a>
to select an appropriate version of <a class="reference external" href="https://github.com/pytorch/audio">torchaudio</a> to install if you use a different
version of <a class="reference external" href="https://github.com/pytorch/pytorch">torch</a>.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:~$<span class="w"> </span>pip<span class="w"> </span>install<span class="w"> </span><span class="nv">torch</span><span class="o">==</span><span class="m">1</span>.13.0+cu116<span class="w"> </span><span class="nv">torchaudio</span><span class="o">==</span><span class="m">0</span>.13.0+cu116<span class="w"> </span>-f<span class="w"> </span>https://download.pytorch.org/whl/torch_stable.html
Looking<span class="w"> </span><span class="k">in</span><span class="w"> </span>links:<span class="w"> </span>https://download.pytorch.org/whl/torch_stable.html
Collecting<span class="w"> </span><span class="nv">torch</span><span class="o">==</span><span class="m">1</span>.13.0+cu116
<span class="w"> </span>Downloading<span class="w"> </span>https://download.pytorch.org/whl/cu116/torch-1.13.0%2Bcu116-cp38-cp38-linux_x86_64.whl<span class="w"> </span><span class="o">(</span><span class="m">1983</span>.0<span class="w"> </span>MB<span class="o">)</span>
<span class="w"> </span>________________________________________<span class="w"> </span><span class="m">2</span>.0/2.0<span class="w"> </span>GB<span class="w"> </span><span class="m">764</span>.4<span class="w"> </span>kB/s<span class="w"> </span>eta<span class="w"> </span><span class="m">0</span>:00:00
Collecting<span class="w"> </span><span class="nv">torchaudio</span><span class="o">==</span><span class="m">0</span>.13.0+cu116
<span class="w"> </span>Downloading<span class="w"> </span>https://download.pytorch.org/whl/cu116/torchaudio-0.13.0%2Bcu116-cp38-cp38-linux_x86_64.whl<span class="w"> </span><span class="o">(</span><span class="m">4</span>.2<span class="w"> </span>MB<span class="o">)</span>
<span class="w"> </span>________________________________________<span class="w"> </span><span class="m">4</span>.2/4.2<span class="w"> </span>MB<span class="w"> </span><span class="m">1</span>.3<span class="w"> </span>MB/s<span class="w"> </span>eta<span class="w"> </span><span class="m">0</span>:00:00
Requirement<span class="w"> </span>already<span class="w"> </span>satisfied:<span class="w"> </span>typing-extensions<span class="w"> </span><span class="k">in</span><span class="w"> </span>/star-fj/fangjun/test-icefall/lib/python3.8/site-packages<span class="w"> </span><span class="o">(</span>from<span class="w"> </span><span class="nv">torch</span><span class="o">==</span><span class="m">1</span>.13.0+cu116<span class="o">)</span><span class="w"> </span><span class="o">(</span><span class="m">4</span>.7.1<span class="o">)</span>
Installing<span class="w"> </span>collected<span class="w"> </span>packages:<span class="w"> </span>torch,<span class="w"> </span>torchaudio
Successfully<span class="w"> </span>installed<span class="w"> </span>torch-1.13.0+cu116<span class="w"> </span>torchaudio-0.13.0+cu116
</pre></div>
</div>
<p>Verify that <a class="reference external" href="https://github.com/pytorch/pytorch">torch</a> and <a class="reference external" href="https://github.com/pytorch/audio">torchaudio</a> are successfully installed:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:~$<span class="w"> </span>python3<span class="w"> </span>-c<span class="w"> </span><span class="s2">&quot;import torch; print(torch.__version__)&quot;</span>
<span class="m">1</span>.13.0+cu116
<span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:~$<span class="w"> </span>python3<span class="w"> </span>-c<span class="w"> </span><span class="s2">&quot;import torchaudio; print(torchaudio.__version__)&quot;</span>
<span class="m">0</span>.13.0+cu116
</pre></div>
</div>
</section>
<section id="id3">
<h3>(4) Install k2<a class="headerlink" href="#id3" title="Permalink to this heading"></a></h3>
<p>We will install <a class="reference external" href="https://github.com/k2-fsa/k2">k2</a> from pre-compiled wheels by following
<a class="reference external" href="https://k2-fsa.github.io/k2/installation/from_wheels.html">https://k2-fsa.github.io/k2/installation/from_wheels.html</a></p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:~$<span class="w"> </span>pip<span class="w"> </span>install<span class="w"> </span><span class="nv">k2</span><span class="o">==</span><span class="m">1</span>.24.3.dev20230725+cuda11.6.torch1.13.0<span class="w"> </span>-f<span class="w"> </span>https://k2-fsa.github.io/k2/cuda.html
<span class="c1"># For users from China</span>
<span class="c1"># 中国国内用户,如果访问不了 huggingface, 请使用</span>
<span class="c1"># pip install k2==1.24.3.dev20230725+cuda11.6.torch1.13.0 -f https://k2-fsa.github.io/k2/cuda-cn.html</span>
Looking<span class="w"> </span><span class="k">in</span><span class="w"> </span>indexes:<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/simple
Looking<span class="w"> </span><span class="k">in</span><span class="w"> </span>links:<span class="w"> </span>https://k2-fsa.github.io/k2/cuda.html
Collecting<span class="w"> </span><span class="nv">k2</span><span class="o">==</span><span class="m">1</span>.24.3.dev20230725+cuda11.6.torch1.13.0
<span class="w"> </span>Downloading<span class="w"> </span>https://huggingface.co/csukuangfj/k2/resolve/main/ubuntu-cuda/k2-1.24.3.dev20230725%2Bcuda11.6.torch1.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl<span class="w"> </span><span class="o">(</span><span class="m">104</span>.3<span class="w"> </span>MB<span class="o">)</span>
<span class="w"> </span>________________________________________<span class="w"> </span><span class="m">104</span>.3/104.3<span class="w"> </span>MB<span class="w"> </span><span class="m">5</span>.1<span class="w"> </span>MB/s<span class="w"> </span>eta<span class="w"> </span><span class="m">0</span>:00:00
Requirement<span class="w"> </span>already<span class="w"> </span>satisfied:<span class="w"> </span><span class="nv">torch</span><span class="o">==</span><span class="m">1</span>.13.0<span class="w"> </span><span class="k">in</span><span class="w"> </span>/star-fj/fangjun/test-icefall/lib/python3.8/site-packages<span class="w"> </span><span class="o">(</span>from<span class="w"> </span><span class="nv">k2</span><span class="o">==</span><span class="m">1</span>.24.3.dev20230725+cuda11.6.torch1.13.0<span class="o">)</span><span class="w"> </span><span class="o">(</span><span class="m">1</span>.13.0+cu116<span class="o">)</span>
Collecting<span class="w"> </span>graphviz
<span class="w"> </span>Using<span class="w"> </span>cached<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/de/5e/fcbb22c68208d39edff467809d06c9d81d7d27426460ebc598e55130c1aa/graphviz-0.20.1-py3-none-any.whl<span class="w"> </span><span class="o">(</span><span class="m">47</span><span class="w"> </span>kB<span class="o">)</span>
Requirement<span class="w"> </span>already<span class="w"> </span>satisfied:<span class="w"> </span>typing-extensions<span class="w"> </span><span class="k">in</span><span class="w"> </span>/star-fj/fangjun/test-icefall/lib/python3.8/site-packages<span class="w"> </span><span class="o">(</span>from<span class="w"> </span><span class="nv">torch</span><span class="o">==</span><span class="m">1</span>.13.0-&gt;k2<span class="o">==</span><span class="m">1</span>.24.3.dev20230725+cuda11.6.torch1.13.0<span class="o">)</span><span class="w"> </span><span class="o">(</span><span class="m">4</span>.7.1<span class="o">)</span>
Installing<span class="w"> </span>collected<span class="w"> </span>packages:<span class="w"> </span>graphviz,<span class="w"> </span>k2
Successfully<span class="w"> </span>installed<span class="w"> </span>graphviz-0.20.1<span class="w"> </span>k2-1.24.3.dev20230725+cuda11.6.torch1.13.0
</pre></div>
</div>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p>Please refer to <a class="reference external" href="https://k2-fsa.github.io/k2/cuda.html">https://k2-fsa.github.io/k2/cuda.html</a> for the available
pre-compiled wheels about <a class="reference external" href="https://github.com/k2-fsa/k2">k2</a>.</p>
</div>
<p>Verify that <a class="reference external" href="https://github.com/k2-fsa/k2">k2</a> has been installed successfully:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:~$<span class="w"> </span>python3<span class="w"> </span>-m<span class="w"> </span>k2.version
Collecting<span class="w"> </span>environment<span class="w"> </span>information...
k2<span class="w"> </span>version:<span class="w"> </span><span class="m">1</span>.24.3
Build<span class="w"> </span>type:<span class="w"> </span>Release
Git<span class="w"> </span>SHA1:<span class="w"> </span>4c05309499a08454997adf500b56dcc629e35ae5
Git<span class="w"> </span>date:<span class="w"> </span>Tue<span class="w"> </span>Jul<span class="w"> </span><span class="m">25</span><span class="w"> </span><span class="m">16</span>:23:36<span class="w"> </span><span class="m">2023</span>
Cuda<span class="w"> </span>used<span class="w"> </span>to<span class="w"> </span>build<span class="w"> </span>k2:<span class="w"> </span><span class="m">11</span>.6
cuDNN<span class="w"> </span>used<span class="w"> </span>to<span class="w"> </span>build<span class="w"> </span>k2:<span class="w"> </span><span class="m">8</span>.3.2
Python<span class="w"> </span>version<span class="w"> </span>used<span class="w"> </span>to<span class="w"> </span>build<span class="w"> </span>k2:<span class="w"> </span><span class="m">3</span>.8
OS<span class="w"> </span>used<span class="w"> </span>to<span class="w"> </span>build<span class="w"> </span>k2:<span class="w"> </span>CentOS<span class="w"> </span>Linux<span class="w"> </span>release<span class="w"> </span><span class="m">7</span>.9.2009<span class="w"> </span><span class="o">(</span>Core<span class="o">)</span>
CMake<span class="w"> </span>version:<span class="w"> </span><span class="m">3</span>.27.0
GCC<span class="w"> </span>version:<span class="w"> </span><span class="m">9</span>.3.1
CMAKE_CUDA_FLAGS:<span class="w"> </span>-Wno-deprecated-gpu-targets<span class="w"> </span>-lineinfo<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-use_fast_math<span class="w"> </span>-Xptxas<span class="o">=</span>-w<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_35,code<span class="o">=</span>sm_35<span class="w"> </span>-lineinfo<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-use_fast_math<span class="w"> </span>-Xptxas<span class="o">=</span>-w<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_50,code<span class="o">=</span>sm_50<span class="w"> </span>-lineinfo<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-use_fast_math<span class="w"> </span>-Xptxas<span class="o">=</span>-w<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_60,code<span class="o">=</span>sm_60<span class="w"> </span>-lineinfo<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-use_fast_math<span class="w"> </span>-Xptxas<span class="o">=</span>-w<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_61,code<span class="o">=</span>sm_61<span class="w"> </span>-lineinfo<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-use_fast_math<span class="w"> </span>-Xptxas<span class="o">=</span>-w<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_70,code<span class="o">=</span>sm_70<span class="w"> </span>-lineinfo<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-use_fast_math<span class="w"> </span>-Xptxas<span class="o">=</span>-w<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_75,code<span class="o">=</span>sm_75<span class="w"> </span>-lineinfo<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-use_fast_math<span class="w"> </span>-Xptxas<span class="o">=</span>-w<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_80,code<span class="o">=</span>sm_80<span class="w"> </span>-lineinfo<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-use_fast_math<span class="w"> </span>-Xptxas<span class="o">=</span>-w<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_86,code<span class="o">=</span>sm_86<span class="w"> </span>-DONNX_NAMESPACE<span class="o">=</span>onnx_c2<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_35,code<span class="o">=</span>sm_35<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_50,code<span class="o">=</span>sm_50<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_52,code<span class="o">=</span>sm_52<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_60,code<span class="o">=</span>sm_60<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_61,code<span class="o">=</span>sm_61<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_70,code<span class="o">=</span>sm_70<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_75,code<span class="o">=</span>sm_75<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_80,code<span class="o">=</span>sm_80<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_86,code<span class="o">=</span>sm_86<span class="w"> </span>-gencode<span class="w"> </span><span class="nv">arch</span><span class="o">=</span>compute_86,code<span class="o">=</span>compute_86<span class="w"> </span>-Xcudafe<span class="w"> </span>--diag_suppress<span class="o">=</span>cc_clobber_ignored,--diag_suppress<span class="o">=</span>integer_sign_change,--diag_suppress<span class="o">=</span>useless_using_declaration,--diag_suppress<span class="o">=</span>set_but_not_used,--diag_suppress<span class="o">=</span>field_without_dll_interface,--diag_suppress<span class="o">=</span>base_class_has_different_dll_interface,--diag_suppress<span class="o">=</span>dll_interface_conflict_none_assumed,--diag_suppress<span class="o">=</span>dll_interface_conflict_dllexport_assumed,--diag_suppress<span class="o">=</span>implicit_return_from_non_void_function,--diag_suppress<span class="o">=</span>unsigned_compare_with_zero,--diag_suppress<span class="o">=</span>declared_but_not_referenced,--diag_suppress<span class="o">=</span>bad_friend_decl<span class="w"> </span>--expt-relaxed-constexpr<span class="w"> </span>--expt-extended-lambda<span class="w"> </span>-D_GLIBCXX_USE_CXX11_ABI<span class="o">=</span><span class="m">0</span><span class="w"> </span>--compiler-options<span class="w"> </span>-Wall<span class="w"> </span>--compiler-options<span class="w"> </span>-Wno-strict-overflow<span class="w"> </span>--compiler-options<span class="w"> </span>-Wno-unknown-pragmas
CMAKE_CXX_FLAGS:<span class="w"> </span>-D_GLIBCXX_USE_CXX11_ABI<span class="o">=</span><span class="m">0</span><span class="w"> </span>-Wno-unused-variable<span class="w"> </span>-Wno-strict-overflow
PyTorch<span class="w"> </span>version<span class="w"> </span>used<span class="w"> </span>to<span class="w"> </span>build<span class="w"> </span>k2:<span class="w"> </span><span class="m">1</span>.13.0+cu116
PyTorch<span class="w"> </span>is<span class="w"> </span>using<span class="w"> </span>Cuda:<span class="w"> </span><span class="m">11</span>.6
NVTX<span class="w"> </span>enabled:<span class="w"> </span>True
With<span class="w"> </span>CUDA:<span class="w"> </span>True
Disable<span class="w"> </span>debug:<span class="w"> </span>True
Sync<span class="w"> </span>kernels<span class="w"> </span>:<span class="w"> </span>False
Disable<span class="w"> </span>checks:<span class="w"> </span>False
Max<span class="w"> </span>cpu<span class="w"> </span>memory<span class="w"> </span>allocate:<span class="w"> </span><span class="m">214748364800</span><span class="w"> </span>bytes<span class="w"> </span><span class="o">(</span>or<span class="w"> </span><span class="m">200</span>.0<span class="w"> </span>GB<span class="o">)</span>
k2<span class="w"> </span>abort:<span class="w"> </span>False
__file__:<span class="w"> </span>/star-fj/fangjun/test-icefall/lib/python3.8/site-packages/k2/version/version.py
_k2.__file__:<span class="w"> </span>/star-fj/fangjun/test-icefall/lib/python3.8/site-packages/_k2.cpython-38-x86_64-linux-gnu.so
</pre></div>
</div>
</section>
<section id="id5">
<h3>(5) Install lhotse<a class="headerlink" href="#id5" title="Permalink to this heading"></a></h3>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:~$<span class="w"> </span>pip<span class="w"> </span>install<span class="w"> </span>git+https://github.com/lhotse-speech/lhotse
Collecting<span class="w"> </span>git+https://github.com/lhotse-speech/lhotse
<span class="w"> </span>Cloning<span class="w"> </span>https://github.com/lhotse-speech/lhotse<span class="w"> </span>to<span class="w"> </span>/tmp/pip-req-build-vq12fd5i
<span class="w"> </span>Running<span class="w"> </span><span class="nb">command</span><span class="w"> </span>git<span class="w"> </span>clone<span class="w"> </span>--filter<span class="o">=</span>blob:none<span class="w"> </span>--quiet<span class="w"> </span>https://github.com/lhotse-speech/lhotse<span class="w"> </span>/tmp/pip-req-build-vq12fd5i
<span class="w"> </span>Resolved<span class="w"> </span>https://github.com/lhotse-speech/lhotse<span class="w"> </span>to<span class="w"> </span>commit<span class="w"> </span>7640d663469b22cd0b36f3246ee9b849cd25e3b7
<span class="w"> </span>Installing<span class="w"> </span>build<span class="w"> </span>dependencies<span class="w"> </span>...<span class="w"> </span><span class="k">done</span>
<span class="w"> </span>Getting<span class="w"> </span>requirements<span class="w"> </span>to<span class="w"> </span>build<span class="w"> </span>wheel<span class="w"> </span>...<span class="w"> </span><span class="k">done</span>
<span class="w"> </span>Preparing<span class="w"> </span>metadata<span class="w"> </span><span class="o">(</span>pyproject.toml<span class="o">)</span><span class="w"> </span>...<span class="w"> </span><span class="k">done</span>
Collecting<span class="w"> </span>cytoolz&gt;<span class="o">=</span><span class="m">0</span>.10.1
<span class="w"> </span>Downloading<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/1e/3b/a7828d575aa17fb7acaf1ced49a3655aa36dad7e16eb7e6a2e4df0dda76f/cytoolz-0.12.2-cp38-cp38-
manylinux_2_17_x86_64.manylinux2014_x86_64.whl<span class="w"> </span><span class="o">(</span><span class="m">2</span>.0<span class="w"> </span>MB<span class="o">)</span>
<span class="w"> </span>________________________________________<span class="w"> </span><span class="m">2</span>.0/2.0<span class="w"> </span>MB<span class="w"> </span><span class="m">33</span>.2<span class="w"> </span>MB/s<span class="w"> </span>eta<span class="w"> </span><span class="m">0</span>:00:00
Collecting<span class="w"> </span>pyyaml&gt;<span class="o">=</span><span class="m">5</span>.3.1
<span class="w"> </span>Downloading<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/c8/6b/6600ac24725c7388255b2f5add93f91e58a5d7efaf4af244fdbcc11a541b/PyYAML-6.0.1-cp38-cp38-ma
nylinux_2_17_x86_64.manylinux2014_x86_64.whl<span class="w"> </span><span class="o">(</span><span class="m">736</span><span class="w"> </span>kB<span class="o">)</span>
<span class="w"> </span>________________________________________<span class="w"> </span><span class="m">736</span>.6/736.6<span class="w"> </span>kB<span class="w"> </span><span class="m">38</span>.6<span class="w"> </span>MB/s<span class="w"> </span>eta<span class="w"> </span><span class="m">0</span>:00:00
Collecting<span class="w"> </span>dataclasses
<span class="w"> </span>Downloading<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/26/2f/1095cdc2868052dd1e64520f7c0d5c8c550ad297e944e641dbf1ffbb9a5d/dataclasses-0.6-py3-none-
any.whl<span class="w"> </span><span class="o">(</span><span class="m">14</span><span class="w"> </span>kB<span class="o">)</span>
Requirement<span class="w"> </span>already<span class="w"> </span>satisfied:<span class="w"> </span>torchaudio<span class="w"> </span><span class="k">in</span><span class="w"> </span>./test-icefall/lib/python3.8/site-packages<span class="w"> </span><span class="o">(</span>from<span class="w"> </span><span class="nv">lhotse</span><span class="o">==</span><span class="m">1</span>.16.0.dev0+git.7640d66.clean<span class="o">)</span><span class="w"> </span><span class="o">(</span><span class="m">0</span>.13.0+cu116<span class="o">)</span>
Collecting<span class="w"> </span>lilcom&gt;<span class="o">=</span><span class="m">1</span>.1.0
<span class="w"> </span>Downloading<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/a8/65/df0a69c52bd085ca1ad4e5c4c1a5c680e25f9477d8e49316c4ff1e5084a4/lilcom-1.7-cp38-cp38-many
linux_2_17_x86_64.manylinux2014_x86_64.whl<span class="w"> </span><span class="o">(</span><span class="m">87</span><span class="w"> </span>kB<span class="o">)</span>
<span class="w"> </span>________________________________________<span class="w"> </span><span class="m">87</span>.1/87.1<span class="w"> </span>kB<span class="w"> </span><span class="m">8</span>.7<span class="w"> </span>MB/s<span class="w"> </span>eta<span class="w"> </span><span class="m">0</span>:00:00
Collecting<span class="w"> </span>tqdm
<span class="w"> </span>Using<span class="w"> </span>cached<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/e6/02/a2cff6306177ae6bc73bc0665065de51dfb3b9db7373e122e2735faf0d97/tqdm-4.65.0-py3-none-any
.whl<span class="w"> </span><span class="o">(</span><span class="m">77</span><span class="w"> </span>kB<span class="o">)</span>
Requirement<span class="w"> </span>already<span class="w"> </span>satisfied:<span class="w"> </span>numpy&gt;<span class="o">=</span><span class="m">1</span>.18.1<span class="w"> </span><span class="k">in</span><span class="w"> </span>./test-icefall/lib/python3.8/site-packages<span class="w"> </span><span class="o">(</span>from<span class="w"> </span><span class="nv">lhotse</span><span class="o">==</span><span class="m">1</span>.16.0.dev0+git.7640d66.clean<span class="o">)</span><span class="w"> </span><span class="o">(</span><span class="m">1</span>.24.4<span class="o">)</span>
Collecting<span class="w"> </span>audioread&gt;<span class="o">=</span><span class="m">2</span>.1.9
<span class="w"> </span>Using<span class="w"> </span>cached<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/5d/cb/82a002441902dccbe427406785db07af10182245ee639ea9f4d92907c923/audioread-3.0.0.tar.gz<span class="w"> </span><span class="o">(</span>
<span class="m">377</span><span class="w"> </span>kB<span class="o">)</span>
<span class="w"> </span>Preparing<span class="w"> </span>metadata<span class="w"> </span><span class="o">(</span>setup.py<span class="o">)</span><span class="w"> </span>...<span class="w"> </span><span class="k">done</span>
Collecting<span class="w"> </span>tabulate&gt;<span class="o">=</span><span class="m">0</span>.8.1
<span class="w"> </span>Using<span class="w"> </span>cached<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/40/44/4a5f08c96eb108af5cb50b41f76142f0afa346dfa99d5296fe7202a11854/tabulate-0.9.0-py3-none-
any.whl<span class="w"> </span><span class="o">(</span><span class="m">35</span><span class="w"> </span>kB<span class="o">)</span>
Collecting<span class="w"> </span>click&gt;<span class="o">=</span><span class="m">7</span>.1.1
<span class="w"> </span>Downloading<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/1a/70/e63223f8116931d365993d4a6b7ef653a4d920b41d03de7c59499962821f/click-8.1.6-py3-none-any.
whl<span class="w"> </span><span class="o">(</span><span class="m">97</span><span class="w"> </span>kB<span class="o">)</span>
<span class="w"> </span>________________________________________<span class="w"> </span><span class="m">97</span>.9/97.9<span class="w"> </span>kB<span class="w"> </span><span class="m">8</span>.4<span class="w"> </span>MB/s<span class="w"> </span>eta<span class="w"> </span><span class="m">0</span>:00:00
Collecting<span class="w"> </span>packaging
<span class="w"> </span>Using<span class="w"> </span>cached<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/ab/c3/57f0601a2d4fe15de7a553c00adbc901425661bf048f2a22dfc500caf121/packaging-23.1-py3-none-
any.whl<span class="w"> </span><span class="o">(</span><span class="m">48</span><span class="w"> </span>kB<span class="o">)</span>
Collecting<span class="w"> </span>intervaltree&gt;<span class="o">=</span><span class="m">3</span>.1.0
<span class="w"> </span>Downloading<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/50/fb/396d568039d21344639db96d940d40eb62befe704ef849b27949ded5c3bb/intervaltree-3.1.0.tar.gz
<span class="w"> </span><span class="o">(</span><span class="m">32</span><span class="w"> </span>kB<span class="o">)</span>
<span class="w"> </span>Preparing<span class="w"> </span>metadata<span class="w"> </span><span class="o">(</span>setup.py<span class="o">)</span><span class="w"> </span>...<span class="w"> </span><span class="k">done</span>
Requirement<span class="w"> </span>already<span class="w"> </span>satisfied:<span class="w"> </span>torch<span class="w"> </span><span class="k">in</span><span class="w"> </span>./test-icefall/lib/python3.8/site-packages<span class="w"> </span><span class="o">(</span>from<span class="w"> </span><span class="nv">lhotse</span><span class="o">==</span><span class="m">1</span>.16.0.dev0+git.7640d66.clean<span class="o">)</span><span class="w"> </span><span class="o">(</span><span class="m">1</span>.13.0+cu116<span class="o">)</span>
Collecting<span class="w"> </span>SoundFile&gt;<span class="o">=</span><span class="m">0</span>.10
<span class="w"> </span>Downloading<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/ad/bd/0602167a213d9184fc688b1086dc6d374b7ae8c33eccf169f9b50ce6568c/soundfile-0.12.1-py2.py3-
none-manylinux_2_17_x86_64.whl<span class="w"> </span><span class="o">(</span><span class="m">1</span>.3<span class="w"> </span>MB<span class="o">)</span>
<span class="w"> </span>________________________________________<span class="w"> </span><span class="m">1</span>.3/1.3<span class="w"> </span>MB<span class="w"> </span><span class="m">46</span>.5<span class="w"> </span>MB/s<span class="w"> </span>eta<span class="w"> </span><span class="m">0</span>:00:00
Collecting<span class="w"> </span>toolz&gt;<span class="o">=</span><span class="m">0</span>.8.0
<span class="w"> </span>Using<span class="w"> </span>cached<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/7f/5c/922a3508f5bda2892be3df86c74f9cf1e01217c2b1f8a0ac4841d903e3e9/toolz-0.12.0-py3-none-any.whl<span class="w"> </span><span class="o">(</span><span class="m">55</span><span class="w"> </span>kB<span class="o">)</span>
Collecting<span class="w"> </span>sortedcontainers&lt;<span class="m">3</span>.0,&gt;<span class="o">=</span><span class="m">2</span>.0
<span class="w"> </span>Using<span class="w"> </span>cached<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/32/46/9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-py2.py3-none-any.whl<span class="w"> </span><span class="o">(</span><span class="m">29</span><span class="w"> </span>kB<span class="o">)</span>
Collecting<span class="w"> </span>cffi&gt;<span class="o">=</span><span class="m">1</span>.0
<span class="w"> </span>Using<span class="w"> </span>cached<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/b7/8b/06f30caa03b5b3ac006de4f93478dbd0239e2a16566d81a106c322dc4f79/cffi-1.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl<span class="w"> </span><span class="o">(</span><span class="m">442</span><span class="w"> </span>kB<span class="o">)</span>
Requirement<span class="w"> </span>already<span class="w"> </span>satisfied:<span class="w"> </span>typing-extensions<span class="w"> </span><span class="k">in</span><span class="w"> </span>./test-icefall/lib/python3.8/site-packages<span class="w"> </span><span class="o">(</span>from<span class="w"> </span>torch-&gt;lhotse<span class="o">==</span><span class="m">1</span>.16.0.dev0+git.7640d66.clean<span class="o">)</span><span class="w"> </span><span class="o">(</span><span class="m">4</span>.7.1<span class="o">)</span>
Collecting<span class="w"> </span>pycparser
<span class="w"> </span>Using<span class="w"> </span>cached<span class="w"> </span>https://pypi.tuna.tsinghua.edu.cn/packages/62/d5/5f610ebe421e85889f2e55e33b7f9a6795bd982198517d912eb1c76e1a53/pycparser-2.21-py2.py3-none-any.whl<span class="w"> </span><span class="o">(</span><span class="m">118</span><span class="w"> </span>kB<span class="o">)</span>
Building<span class="w"> </span>wheels<span class="w"> </span><span class="k">for</span><span class="w"> </span>collected<span class="w"> </span>packages:<span class="w"> </span>lhotse,<span class="w"> </span>audioread,<span class="w"> </span>intervaltree
<span class="w"> </span>Building<span class="w"> </span>wheel<span class="w"> </span><span class="k">for</span><span class="w"> </span>lhotse<span class="w"> </span><span class="o">(</span>pyproject.toml<span class="o">)</span><span class="w"> </span>...<span class="w"> </span><span class="k">done</span>
<span class="w"> </span>Created<span class="w"> </span>wheel<span class="w"> </span><span class="k">for</span><span class="w"> </span>lhotse:<span class="w"> </span><span class="nv">filename</span><span class="o">=</span>lhotse-1.16.0.dev0+git.7640d66.clean-py3-none-any.whl<span class="w"> </span><span class="nv">size</span><span class="o">=</span><span class="m">687627</span><span class="w"> </span><span class="nv">sha256</span><span class="o">=</span>cbf0a4d2d0b639b33b91637a4175bc251d6a021a069644ecb1a9f2b3a83d072a
<span class="w"> </span>Stored<span class="w"> </span><span class="k">in</span><span class="w"> </span>directory:<span class="w"> </span>/tmp/pip-ephem-wheel-cache-wwtk90_m/wheels/7f/7a/8e/a0bf241336e2e3cb573e1e21e5600952d49f5162454f2e612f
<span class="w"> </span>Building<span class="w"> </span>wheel<span class="w"> </span><span class="k">for</span><span class="w"> </span>audioread<span class="w"> </span><span class="o">(</span>setup.py<span class="o">)</span><span class="w"> </span>...<span class="w"> </span><span class="k">done</span>
<span class="w"> </span>Created<span class="w"> </span>wheel<span class="w"> </span><span class="k">for</span><span class="w"> </span>audioread:<span class="w"> </span><span class="nv">filename</span><span class="o">=</span>audioread-3.0.0-py3-none-any.whl<span class="w"> </span><span class="nv">size</span><span class="o">=</span><span class="m">23704</span><span class="w"> </span><span class="nv">sha256</span><span class="o">=</span>5e2d3537c96ce9cf0f645a654c671163707bf8cb8d9e358d0e2b0939a85ff4c2
<span class="w"> </span>Stored<span class="w"> </span><span class="k">in</span><span class="w"> </span>directory:<span class="w"> </span>/star-fj/fangjun/.cache/pip/wheels/e2/c3/9c/f19ae5a03f8862d9f0776b0c0570f1fdd60a119d90954e3f39
<span class="w"> </span>Building<span class="w"> </span>wheel<span class="w"> </span><span class="k">for</span><span class="w"> </span>intervaltree<span class="w"> </span><span class="o">(</span>setup.py<span class="o">)</span><span class="w"> </span>...<span class="w"> </span><span class="k">done</span>
<span class="w"> </span>Created<span class="w"> </span>wheel<span class="w"> </span><span class="k">for</span><span class="w"> </span>intervaltree:<span class="w"> </span><span class="nv">filename</span><span class="o">=</span>intervaltree-3.1.0-py2.py3-none-any.whl<span class="w"> </span><span class="nv">size</span><span class="o">=</span><span class="m">26098</span><span class="w"> </span><span class="nv">sha256</span><span class="o">=</span>2604170976cfffe0d2f678cb1a6e5b525f561cd50babe53d631a186734fec9f9
<span class="w"> </span>Stored<span class="w"> </span><span class="k">in</span><span class="w"> </span>directory:<span class="w"> </span>/star-fj/fangjun/.cache/pip/wheels/f3/ed/2b/c179ebfad4e15452d6baef59737f27beb9bfb442e0620f7271
Successfully<span class="w"> </span>built<span class="w"> </span>lhotse<span class="w"> </span>audioread<span class="w"> </span>intervaltree
Installing<span class="w"> </span>collected<span class="w"> </span>packages:<span class="w"> </span>sortedcontainers,<span class="w"> </span>dataclasses,<span class="w"> </span>tqdm,<span class="w"> </span>toolz,<span class="w"> </span>tabulate,<span class="w"> </span>pyyaml,<span class="w"> </span>pycparser,<span class="w"> </span>packaging,<span class="w"> </span>lilcom,<span class="w"> </span>intervaltree,<span class="w"> </span>click,<span class="w"> </span>audioread,<span class="w"> </span>cytoolz,<span class="w"> </span>cffi,<span class="w"> </span>SoundFile,<span class="w"> </span>lhotse
Successfully<span class="w"> </span>installed<span class="w"> </span>SoundFile-0.12.1<span class="w"> </span>audioread-3.0.0<span class="w"> </span>cffi-1.15.1<span class="w"> </span>click-8.1.6<span class="w"> </span>cytoolz-0.12.2<span class="w"> </span>dataclasses-0.6<span class="w"> </span>intervaltree-3.1.0<span class="w"> </span>lhotse-1.16.0.dev0+git.7640d66.clean<span class="w"> </span>lilcom-1.7<span class="w"> </span>packaging-23.1<span class="w"> </span>pycparser-2.21<span class="w"> </span>pyyaml-6.0.1<span class="w"> </span>sortedcontainers-2.4.0<span class="w"> </span>tabulate-0.9.0<span class="w"> </span>toolz-0.12.0<span class="w"> </span>tqdm-4.65.0
</pre></div>
</div>
<p>Verify that <a class="reference external" href="https://github.com/lhotse-speech/lhotse">lhotse</a> has been installed successfully:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:~$<span class="w"> </span>python3<span class="w"> </span>-c<span class="w"> </span><span class="s2">&quot;import lhotse; print(lhotse.__version__)&quot;</span>
<span class="m">1</span>.16.0.dev+git.7640d66.clean
</pre></div>
</div>
</section>
<section id="id6">
<h3>(6) Download icefall<a class="headerlink" href="#id6" title="Permalink to this heading"></a></h3>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:~$<span class="w"> </span><span class="nb">cd</span><span class="w"> </span>/tmp/
<span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:tmp$<span class="w"> </span>git<span class="w"> </span>clone<span class="w"> </span>https://github.com/k2-fsa/icefall
Cloning<span class="w"> </span>into<span class="w"> </span><span class="s1">&#39;icefall&#39;</span>...
remote:<span class="w"> </span>Enumerating<span class="w"> </span>objects:<span class="w"> </span><span class="m">12942</span>,<span class="w"> </span><span class="k">done</span>.
remote:<span class="w"> </span>Counting<span class="w"> </span>objects:<span class="w"> </span><span class="m">100</span>%<span class="w"> </span><span class="o">(</span><span class="m">67</span>/67<span class="o">)</span>,<span class="w"> </span><span class="k">done</span>.
remote:<span class="w"> </span>Compressing<span class="w"> </span>objects:<span class="w"> </span><span class="m">100</span>%<span class="w"> </span><span class="o">(</span><span class="m">56</span>/56<span class="o">)</span>,<span class="w"> </span><span class="k">done</span>.
remote:<span class="w"> </span>Total<span class="w"> </span><span class="m">12942</span><span class="w"> </span><span class="o">(</span>delta<span class="w"> </span><span class="m">17</span><span class="o">)</span>,<span class="w"> </span>reused<span class="w"> </span><span class="m">35</span><span class="w"> </span><span class="o">(</span>delta<span class="w"> </span><span class="m">6</span><span class="o">)</span>,<span class="w"> </span>pack-reused<span class="w"> </span><span class="m">12875</span>
Receiving<span class="w"> </span>objects:<span class="w"> </span><span class="m">100</span>%<span class="w"> </span><span class="o">(</span><span class="m">12942</span>/12942<span class="o">)</span>,<span class="w"> </span><span class="m">14</span>.77<span class="w"> </span>MiB<span class="w"> </span><span class="p">|</span><span class="w"> </span><span class="m">9</span>.29<span class="w"> </span>MiB/s,<span class="w"> </span><span class="k">done</span>.
Resolving<span class="w"> </span>deltas:<span class="w"> </span><span class="m">100</span>%<span class="w"> </span><span class="o">(</span><span class="m">8835</span>/8835<span class="o">)</span>,<span class="w"> </span><span class="k">done</span>.
<span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:tmp$<span class="w"> </span><span class="nb">cd</span><span class="w"> </span>icefall/
<span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:icefall$<span class="w"> </span>pip<span class="w"> </span>install<span class="w"> </span>-r<span class="w"> </span>./requirements.txt
</pre></div>
</div>
</section>
</section>
<section id="test-your-installation">
<h2>Test Your Installation<a class="headerlink" href="#test-your-installation" title="Permalink to this heading"></a></h2>
<p>To test that your installation is successful, let us run
the <a class="reference external" href="https://github.com/k2-fsa/icefall/tree/master/egs/yesno/ASR">yesno recipe</a>
on <code class="docutils literal notranslate"><span class="pre">CPU</span></code>.</p>
<section id="data-preparation">
<h3>Data preparation<a class="headerlink" href="#data-preparation" title="Permalink to this heading"></a></h3>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:icefall$<span class="w"> </span><span class="nb">export</span><span class="w"> </span><span class="nv">PYTHONPATH</span><span class="o">=</span>/tmp/icefall:<span class="nv">$PYTHONPATH</span>
<span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:icefall$<span class="w"> </span><span class="nb">cd</span><span class="w"> </span>/tmp/icefall
<span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:icefall$<span class="w"> </span><span class="nb">cd</span><span class="w"> </span>egs/yesno/ASR
<span class="o">(</span>test-icefall<span class="o">)</span><span class="w"> </span>kuangfangjun:ASR$<span class="w"> </span>./prepare.sh
</pre></div>
</div>
<p>The log of running <code class="docutils literal notranslate"><span class="pre">./prepare.sh</span></code> is:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>2023-07-27 12:41:39 (prepare.sh:27:main) dl_dir: /tmp/icefall/egs/yesno/ASR/download
2023-07-27 12:41:39 (prepare.sh:30:main) Stage 0: Download data
/tmp/icefall/egs/yesno/ASR/download/waves_yesno.tar.gz: 100%|___________________________________________________| 4.70M/4.70M [00:00&lt;00:00, 11.1MB/s]
2023-07-27 12:41:46 (prepare.sh:39:main) Stage 1: Prepare yesno manifest
2023-07-27 12:41:50 (prepare.sh:45:main) Stage 2: Compute fbank for yesno
2023-07-27 12:41:55,718 INFO [compute_fbank_yesno.py:65] Processing train
Extracting and storing features: 100%|_______________________________________________________________________________| 90/90 [00:01&lt;00:00, 87.82it/s]
2023-07-27 12:41:56,778 INFO [compute_fbank_yesno.py:65] Processing test
Extracting and storing features: 100%|______________________________________________________________________________| 30/30 [00:00&lt;00:00, 256.92it/s]
2023-07-27 12:41:57 (prepare.sh:51:main) Stage 3: Prepare lang
2023-07-27 12:42:02 (prepare.sh:66:main) Stage 4: Prepare G
/project/kaldilm/csrc/arpa_file_parser.cc:void kaldilm::ArpaFileParser::Read(std::istream&amp;):79
[I] Reading \data\ section.
/project/kaldilm/csrc/arpa_file_parser.cc:void kaldilm::ArpaFileParser::Read(std::istream&amp;):140
[I] Reading \1-grams: section.
2023-07-27 12:42:02 (prepare.sh:92:main) Stage 5: Compile HLG
2023-07-27 12:42:07,275 INFO [compile_hlg.py:124] Processing data/lang_phone
2023-07-27 12:42:07,276 INFO [lexicon.py:171] Converting L.pt to Linv.pt
2023-07-27 12:42:07,309 INFO [compile_hlg.py:48] Building ctc_topo. max_token_id: 3
2023-07-27 12:42:07,310 INFO [compile_hlg.py:52] Loading G.fst.txt
2023-07-27 12:42:07,314 INFO [compile_hlg.py:62] Intersecting L and G
2023-07-27 12:42:07,323 INFO [compile_hlg.py:64] LG shape: (4, None)
2023-07-27 12:42:07,323 INFO [compile_hlg.py:66] Connecting LG
2023-07-27 12:42:07,323 INFO [compile_hlg.py:68] LG shape after k2.connect: (4, None)
2023-07-27 12:42:07,323 INFO [compile_hlg.py:70] &lt;class &#39;torch.Tensor&#39;&gt;
2023-07-27 12:42:07,323 INFO [compile_hlg.py:71] Determinizing LG
2023-07-27 12:42:07,341 INFO [compile_hlg.py:74] &lt;class &#39;_k2.ragged.RaggedTensor&#39;&gt;
2023-07-27 12:42:07,341 INFO [compile_hlg.py:76] Connecting LG after k2.determinize
2023-07-27 12:42:07,341 INFO [compile_hlg.py:79] Removing disambiguation symbols on LG
2023-07-27 12:42:07,354 INFO [compile_hlg.py:91] LG shape after k2.remove_epsilon: (6, None)
2023-07-27 12:42:07,445 INFO [compile_hlg.py:96] Arc sorting LG
2023-07-27 12:42:07,445 INFO [compile_hlg.py:99] Composing H and LG
2023-07-27 12:42:07,446 INFO [compile_hlg.py:106] Connecting LG
2023-07-27 12:42:07,446 INFO [compile_hlg.py:109] Arc sorting LG
2023-07-27 12:42:07,447 INFO [compile_hlg.py:111] HLG.shape: (8, None)
2023-07-27 12:42:07,447 INFO [compile_hlg.py:127] Saving HLG.pt to data/lang_phone
</pre></div>
</div>
</section>
<section id="training">
<h3>Training<a class="headerlink" href="#training" title="Permalink to this heading"></a></h3>
<p>Now let us run the training part:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>(test-icefall) kuangfangjun:ASR$ export CUDA_VISIBLE_DEVICES=&quot;&quot;
(test-icefall) kuangfangjun:ASR$ ./tdnn/train.py
</pre></div>
</div>
<div class="admonition caution">
<p class="admonition-title">Caution</p>
<p>We use <code class="docutils literal notranslate"><span class="pre">export</span> <span class="pre">CUDA_VISIBLE_DEVICES=&quot;&quot;</span></code> so that <a class="reference external" href="https://github.com/k2-fsa/icefall">icefall</a> uses CPU
even if there are GPUs available.</p>
</div>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p>In case you get a <code class="docutils literal notranslate"><span class="pre">Segmentation</span> <span class="pre">fault</span> <span class="pre">(core</span> <span class="pre">dump)</span></code> error, please use:</p>
<blockquote>
<div><div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="nb">export</span><span class="w"> </span><span class="nv">PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION</span><span class="o">=</span>python
</pre></div>
</div>
</div></blockquote>
<p>See more at <cite>&lt;https://github.com/k2-fsa/icefall/issues/674&gt;</cite> if you are
interested.</p>
</div>
<p>The training log is given below:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>2023-07-27 12:50:51,936 INFO [train.py:481] Training started
2023-07-27 12:50:51,936 INFO [train.py:482] {&#39;exp_dir&#39;: PosixPath(&#39;tdnn/exp&#39;), &#39;lang_dir&#39;: PosixPath(&#39;data/lang_phone&#39;), &#39;lr&#39;: 0.01, &#39;feature_dim&#39;: 23, &#39;weight_decay&#39;: 1e-06, &#39;start_epoch&#39;: 0, &#39;best_train_loss&#39;: inf, &#39;best_valid_loss&#39;: inf, &#39;best_train_epoch&#39;: -1, &#39;best_valid_epoch&#39;: -1, &#39;batch_idx_train&#39;: 0, &#39;log_interval&#39;: 10, &#39;reset_interval&#39;: 20, &#39;valid_interval&#39;: 10, &#39;beam_size&#39;: 10, &#39;reduction&#39;: &#39;sum&#39;, &#39;use_double_scores&#39;: True, &#39;world_size&#39;: 1, &#39;master_port&#39;: 12354, &#39;tensorboard&#39;: True, &#39;num_epochs&#39;: 15, &#39;seed&#39;: 42, &#39;feature_dir&#39;: PosixPath(&#39;data/fbank&#39;), &#39;max_duration&#39;: 30.0, &#39;bucketing_sampler&#39;: False, &#39;num_buckets&#39;: 10, &#39;concatenate_cuts&#39;: False, &#39;duration_factor&#39;: 1.0, &#39;gap&#39;: 1.0, &#39;on_the_fly_feats&#39;: False, &#39;shuffle&#39;: False, &#39;return_cuts&#39;: True, &#39;num_workers&#39;: 2, &#39;env_info&#39;: {&#39;k2-version&#39;: &#39;1.24.3&#39;, &#39;k2-build-type&#39;: &#39;Release&#39;, &#39;k2-with-cuda&#39;: True, &#39;k2-git-sha1&#39;: &#39;4c05309499a08454997adf500b56dcc629e35ae5&#39;, &#39;k2-git-date&#39;: &#39;Tue Jul 25 16:23:36 2023&#39;, &#39;lhotse-version&#39;: &#39;1.16.0.dev+git.7640d66.clean&#39;, &#39;torch-version&#39;: &#39;1.13.0+cu116&#39;, &#39;torch-cuda-available&#39;: False, &#39;torch-cuda-version&#39;: &#39;11.6&#39;, &#39;python-version&#39;: &#39;3.8&#39;, &#39;icefall-git-branch&#39;: &#39;master&#39;, &#39;icefall-git-sha1&#39;: &#39;3fb0a43-clean&#39;, &#39;icefall-git-date&#39;: &#39;Thu Jul 27 12:36:05 2023&#39;, &#39;icefall-path&#39;: &#39;/tmp/icefall&#39;, &#39;k2-path&#39;: &#39;/star-fj/fangjun/test-icefall/lib/python3.8/site-packages/k2/__init__.py&#39;, &#39;lhotse-path&#39;: &#39;/star-fj/fangjun/test-icefall/lib/python3.8/site-packages/lhotse/__init__.py&#39;, &#39;hostname&#39;: &#39;de-74279-k2-train-1-1220091118-57c4d55446-sph26&#39;, &#39;IP address&#39;: &#39;10.177.77.20&#39;}}
2023-07-27 12:50:51,941 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.pt
2023-07-27 12:50:51,949 INFO [train.py:495] device: cpu
2023-07-27 12:50:51,965 INFO [asr_datamodule.py:146] About to get train cuts
2023-07-27 12:50:51,965 INFO [asr_datamodule.py:244] About to get train cuts
2023-07-27 12:50:51,967 INFO [asr_datamodule.py:149] About to create train dataset
2023-07-27 12:50:51,967 INFO [asr_datamodule.py:199] Using SingleCutSampler.
2023-07-27 12:50:51,967 INFO [asr_datamodule.py:205] About to create train dataloader
2023-07-27 12:50:51,968 INFO [asr_datamodule.py:218] About to get test cuts
2023-07-27 12:50:51,968 INFO [asr_datamodule.py:252] About to get test cuts
2023-07-27 12:50:52,565 INFO [train.py:422] Epoch 0, batch 0, loss[loss=1.065, over 2436.00 frames. ], tot_loss[loss=1.065, over 2436.00 frames. ], batch size: 4
2023-07-27 12:50:53,681 INFO [train.py:422] Epoch 0, batch 10, loss[loss=0.4561, over 2828.00 frames. ], tot_loss[loss=0.7076, over 22192.90 frames.], batch size: 4
2023-07-27 12:50:54,167 INFO [train.py:444] Epoch 0, validation loss=0.9002, over 18067.00 frames.
2023-07-27 12:50:55,011 INFO [train.py:422] Epoch 0, batch 20, loss[loss=0.2555, over 2695.00 frames. ], tot_loss[loss=0.484, over 34971.47 frames. ], batch size: 5
2023-07-27 12:50:55,331 INFO [train.py:444] Epoch 0, validation loss=0.4688, over 18067.00 frames.
2023-07-27 12:50:55,368 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-0.pt
2023-07-27 12:50:55,633 INFO [train.py:422] Epoch 1, batch 0, loss[loss=0.2532, over 2436.00 frames. ], tot_loss[loss=0.2532, over 2436.00 frames. ],
batch size: 4
2023-07-27 12:50:56,242 INFO [train.py:422] Epoch 1, batch 10, loss[loss=0.1139, over 2828.00 frames. ], tot_loss[loss=0.1592, over 22192.90 frames.], batch size: 4
2023-07-27 12:50:56,522 INFO [train.py:444] Epoch 1, validation loss=0.1627, over 18067.00 frames.
2023-07-27 12:50:57,209 INFO [train.py:422] Epoch 1, batch 20, loss[loss=0.07055, over 2695.00 frames. ], tot_loss[loss=0.1175, over 34971.47 frames.], batch size: 5
2023-07-27 12:50:57,600 INFO [train.py:444] Epoch 1, validation loss=0.07091, over 18067.00 frames.
2023-07-27 12:50:57,640 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-1.pt
2023-07-27 12:50:57,847 INFO [train.py:422] Epoch 2, batch 0, loss[loss=0.07731, over 2436.00 frames. ], tot_loss[loss=0.07731, over 2436.00 frames.], batch size: 4
2023-07-27 12:50:58,427 INFO [train.py:422] Epoch 2, batch 10, loss[loss=0.04391, over 2828.00 frames. ], tot_loss[loss=0.05341, over 22192.90 frames. ], batch size: 4
2023-07-27 12:50:58,884 INFO [train.py:444] Epoch 2, validation loss=0.04384, over 18067.00 frames.
2023-07-27 12:50:59,387 INFO [train.py:422] Epoch 2, batch 20, loss[loss=0.03458, over 2695.00 frames. ], tot_loss[loss=0.04616, over 34971.47 frames. ], batch size: 5
2023-07-27 12:50:59,707 INFO [train.py:444] Epoch 2, validation loss=0.03379, over 18067.00 frames.
2023-07-27 12:50:59,758 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-2.pt
... ...
2023-07-27 12:51:23,433 INFO [train.py:422] Epoch 13, batch 0, loss[loss=0.01054, over 2436.00 frames. ], tot_loss[loss=0.01054, over 2436.00 frames. ], batch size: 4
2023-07-27 12:51:23,980 INFO [train.py:422] Epoch 13, batch 10, loss[loss=0.009014, over 2828.00 frames. ], tot_loss[loss=0.009974, over 22192.90 frames. ], batch size: 4
2023-07-27 12:51:24,489 INFO [train.py:444] Epoch 13, validation loss=0.01085, over 18067.00 frames.
2023-07-27 12:51:25,258 INFO [train.py:422] Epoch 13, batch 20, loss[loss=0.01172, over 2695.00 frames. ], tot_loss[loss=0.01055, over 34971.47 frames. ], batch size: 5
2023-07-27 12:51:25,621 INFO [train.py:444] Epoch 13, validation loss=0.01074, over 18067.00 frames.
2023-07-27 12:51:25,699 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-13.pt
2023-07-27 12:51:25,866 INFO [train.py:422] Epoch 14, batch 0, loss[loss=0.01044, over 2436.00 frames. ], tot_loss[loss=0.01044, over 2436.00 frames. ], batch size: 4
2023-07-27 12:51:26,844 INFO [train.py:422] Epoch 14, batch 10, loss[loss=0.008942, over 2828.00 frames. ], tot_loss[loss=0.01, over 22192.90 frames. ], batch size: 4
2023-07-27 12:51:27,221 INFO [train.py:444] Epoch 14, validation loss=0.01082, over 18067.00 frames.
2023-07-27 12:51:27,970 INFO [train.py:422] Epoch 14, batch 20, loss[loss=0.01169, over 2695.00 frames. ], tot_loss[loss=0.01054, over 34971.47 frames. ], batch size: 5
2023-07-27 12:51:28,247 INFO [train.py:444] Epoch 14, validation loss=0.01073, over 18067.00 frames.
2023-07-27 12:51:28,323 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-14.pt
2023-07-27 12:51:28,326 INFO [train.py:555] Done!
</pre></div>
</div>
</section>
<section id="decoding">
<h3>Decoding<a class="headerlink" href="#decoding" title="Permalink to this heading"></a></h3>
<p>Let us use the trained model to decode the test set:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>(test-icefall) kuangfangjun:ASR$ ./tdnn/decode.py
2023-07-27 12:55:12,840 INFO [decode.py:263] Decoding started
2023-07-27 12:55:12,840 INFO [decode.py:264] {&#39;exp_dir&#39;: PosixPath(&#39;tdnn/exp&#39;), &#39;lang_dir&#39;: PosixPath(&#39;data/lang_phone&#39;), &#39;lm_dir&#39;: PosixPath(&#39;data/lm&#39;), &#39;feature_dim&#39;: 23, &#39;search_beam&#39;: 20, &#39;output_beam&#39;: 8, &#39;min_active_states&#39;: 30, &#39;max_active_states&#39;: 10000, &#39;use_double_scores&#39;: True, &#39;epoch&#39;: 14, &#39;avg&#39;: 2, &#39;export&#39;: False, &#39;feature_dir&#39;: PosixPath(&#39;data/fbank&#39;), &#39;max_duration&#39;: 30.0, &#39;bucketing_sampler&#39;: False, &#39;num_buckets&#39;: 10, &#39;concatenate_cuts&#39;: False, &#39;duration_factor&#39;: 1.0, &#39;gap&#39;: 1.0, &#39;on_the_fly_feats&#39;: False, &#39;shuffle&#39;: False, &#39;return_cuts&#39;: True, &#39;num_workers&#39;: 2, &#39;env_info&#39;: {&#39;k2-version&#39;: &#39;1.24.3&#39;, &#39;k2-build-type&#39;: &#39;Release&#39;, &#39;k2-with-cuda&#39;: True, &#39;k2-git-sha1&#39;: &#39;4c05309499a08454997adf500b56dcc629e35ae5&#39;, &#39;k2-git-date&#39;: &#39;Tue Jul 25 16:23:36 2023&#39;, &#39;lhotse-version&#39;: &#39;1.16.0.dev+git.7640d66.clean&#39;, &#39;torch-version&#39;: &#39;1.13.0+cu116&#39;, &#39;torch-cuda-available&#39;: False, &#39;torch-cuda-version&#39;: &#39;11.6&#39;, &#39;python-version&#39;: &#39;3.8&#39;, &#39;icefall-git-branch&#39;: &#39;master&#39;, &#39;icefall-git-sha1&#39;: &#39;3fb0a43-clean&#39;, &#39;icefall-git-date&#39;: &#39;Thu Jul 27 12:36:05 2023&#39;, &#39;icefall-path&#39;: &#39;/tmp/icefall&#39;, &#39;k2-path&#39;: &#39;/star-fj/fangjun/test-icefall/lib/python3.8/site-packages/k2/__init__.py&#39;, &#39;lhotse-path&#39;: &#39;/star-fj/fangjun/test-icefall/lib/python3.8/site-packages/lhotse/__init__.py&#39;, &#39;hostname&#39;: &#39;de-74279-k2-train-1-1220091118-57c4d55446-sph26&#39;, &#39;IP address&#39;: &#39;10.177.77.20&#39;}}
2023-07-27 12:55:12,841 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.pt
2023-07-27 12:55:12,855 INFO [decode.py:273] device: cpu
2023-07-27 12:55:12,868 INFO [decode.py:291] averaging [&#39;tdnn/exp/epoch-13.pt&#39;, &#39;tdnn/exp/epoch-14.pt&#39;]
2023-07-27 12:55:12,882 INFO [asr_datamodule.py:218] About to get test cuts
2023-07-27 12:55:12,883 INFO [asr_datamodule.py:252] About to get test cuts
2023-07-27 12:55:13,157 INFO [decode.py:204] batch 0/?, cuts processed until now is 4
2023-07-27 12:55:13,701 INFO [decode.py:241] The transcripts are stored in tdnn/exp/recogs-test_set.txt
2023-07-27 12:55:13,702 INFO [utils.py:564] [test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
2023-07-27 12:55:13,704 INFO [decode.py:249] Wrote detailed error stats to tdnn/exp/errs-test_set.txt
2023-07-27 12:55:13,704 INFO [decode.py:316] Done!
</pre></div>
</div>
<p><strong>Congratulations!</strong> You have successfully setup the environment and have run the first recipe in <a class="reference external" href="https://github.com/k2-fsa/icefall">icefall</a>.</p>
<p>Have fun with <code class="docutils literal notranslate"><span class="pre">icefall</span></code>!</p>
</section>
</section>
<section id="youtube-video">
<h2>YouTube Video<a class="headerlink" href="#youtube-video" title="Permalink to this heading"></a></h2>
<p>We provide the following YouTube video showing how to install <a class="reference external" href="https://github.com/k2-fsa/icefall">icefall</a>.
It also shows how to debug various problems that you may encounter while
using <a class="reference external" href="https://github.com/k2-fsa/icefall">icefall</a>.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>To get the latest news of <a class="reference external" href="https://github.com/k2-fsa">next-gen Kaldi</a>, please subscribe
the following YouTube channel by <a class="reference external" href="https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw">Nadira Povey</a>:</p>
<blockquote>
<div><p><a class="reference external" href="https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw">https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw</a></p>
</div></blockquote>
</div>
<div class="video_wrapper" style="">
<iframe allowfullscreen="true" src="https://www.youtube.com/embed/LVmrBD0tLfE" style="border: 0; height: 345px; width: 560px">
</iframe></div></section>
</section>
</div>
</div>
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
<a href="../for-dummies/model-export.html" class="btn btn-neutral float-left" title="Model Export" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<a href="../docker/index.html" class="btn btn-neutral float-right" title="Docker" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright 2021, icefall development team.</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>