mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-11 19:12:30 +00:00
276 lines
7.1 KiB
Python
Executable File
276 lines
7.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
Usage:
|
|
./rnn_lm/compute_perplexity.py \
|
|
--epoch 4 \
|
|
--avg 2 \
|
|
--lm-data ./data/lm_training_bpe_500/sorted_lm_data-test.pt
|
|
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from dataset import get_dataloader
|
|
from model import RnnLmModel
|
|
|
|
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
|
from icefall.utils import AttributeDict, setup_logger, str2bool
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=49,
|
|
help="It specifies the checkpoint to use for decoding."
|
|
"Note: Epoch counts from 0.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=20,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch'. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="rnn_lm/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lm-data",
|
|
type=str,
|
|
help="Path to the LM test data for computing perplexity",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--vocab-size",
|
|
type=int,
|
|
default=500,
|
|
help="Vocabulary size of the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--embedding-dim",
|
|
type=int,
|
|
default=2048,
|
|
help="Embedding dim of the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--hidden-dim",
|
|
type=int,
|
|
default=2048,
|
|
help="Hidden dim of the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-layers",
|
|
type=int,
|
|
default=3,
|
|
help="Number of RNN layers the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tie-weights",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""True to share the weights between the input embedding layer and the
|
|
last output linear layer
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--batch-size",
|
|
type=int,
|
|
default=50,
|
|
help="Number of RNN layers the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-sent-len",
|
|
type=int,
|
|
default=100,
|
|
help="Number of RNN layers the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--sos-id",
|
|
type=int,
|
|
default=1,
|
|
help="SOS ID",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--eos-id",
|
|
type=int,
|
|
default=1,
|
|
help="EOS ID",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--blank-id",
|
|
type=int,
|
|
default=0,
|
|
help="Blank ID",
|
|
)
|
|
return parser
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
args.lm_data = Path(args.lm_data)
|
|
|
|
params = AttributeDict(vars(args))
|
|
|
|
if params.iter > 0:
|
|
setup_logger(
|
|
f"{params.exp_dir}/log-ppl/log-ppl-iter-{params.iter}-avg-{params.avg}"
|
|
)
|
|
else:
|
|
setup_logger(
|
|
f"{params.exp_dir}/log-ppl/log-ppl-epoch-{params.epoch}-avg-{params.avg}"
|
|
)
|
|
logging.info("Computing perplexity started")
|
|
logging.info(params)
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"Device: {device}")
|
|
|
|
logging.info("About to create model")
|
|
model = RnnLmModel(
|
|
vocab_size=params.vocab_size,
|
|
embedding_dim=params.embedding_dim,
|
|
hidden_dim=params.hidden_dim,
|
|
num_layers=params.num_layers,
|
|
tie_weights=params.tie_weights,
|
|
)
|
|
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints(filenames, device=device), strict=False
|
|
)
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if i >= 0:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints(filenames, device=device), strict=False
|
|
)
|
|
|
|
model.to(device)
|
|
model.eval()
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
num_param_requires_grad = sum(
|
|
[p.numel() for p in model.parameters() if p.requires_grad]
|
|
)
|
|
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
logging.info(
|
|
f"Number of model parameters (requires_grad): "
|
|
f"{num_param_requires_grad} "
|
|
f"({num_param_requires_grad/num_param_requires_grad*100}%)"
|
|
)
|
|
|
|
logging.info(f"Loading LM test data from {params.lm_data}")
|
|
test_dl = get_dataloader(
|
|
filename=params.lm_data,
|
|
is_distributed=False,
|
|
params=params,
|
|
)
|
|
|
|
tot_loss = 0.0
|
|
num_tokens = 0
|
|
num_sentences = 0
|
|
for batch_idx, batch in enumerate(test_dl):
|
|
x, y, sentence_lengths = batch
|
|
x = x.to(device)
|
|
y = y.to(device)
|
|
sentence_lengths = sentence_lengths.to(device)
|
|
|
|
nll = model(x, y, sentence_lengths)
|
|
loss = nll.sum().cpu().item()
|
|
|
|
tot_loss += loss
|
|
num_tokens += sentence_lengths.sum().cpu().item()
|
|
num_sentences += x.size(0)
|
|
|
|
ppl = math.exp(tot_loss / num_tokens)
|
|
logging.info(
|
|
f"total nll: {tot_loss}, num tokens: {num_tokens}, "
|
|
f"num sentences: {num_sentences}, ppl: {ppl:.3f}"
|
|
)
|
|
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|