mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-11 19:12:30 +00:00
194 lines
5.5 KiB
Bash
Executable File
194 lines
5.5 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
set -eou pipefail
|
|
|
|
stage=0
|
|
stop_stage=6
|
|
|
|
# HI_MIA and aishell dataset are used in this experiment.
|
|
# musan dataset is used for data augmentation.
|
|
#
|
|
# For aishell dataset downloading and preparation,
|
|
# refer to icefall/egs/aishell/ASR/prepare.sh.
|
|
#
|
|
# For HI_MIA and HI_MIA_CW dataset,
|
|
# we assume dl_dir (download dir) contains the following
|
|
# directories and files. If not, they will be downloaded
|
|
# by this script automatically.
|
|
# Then these files will be extracted to $dl_dir/HiMia/
|
|
#
|
|
# - $dl_dir/train.tar.gz
|
|
# Himia training dataset.
|
|
# From https://www.openslr.org/85
|
|
#
|
|
# - $dl_dir/dev.tar.gz
|
|
# Himia Devlopment dataset.
|
|
# From https://www.openslr.org/85
|
|
#
|
|
# - $dl_dir/test_v2.tar.gz
|
|
# Himia test dataset.
|
|
# From https://www.openslr.org/85
|
|
#
|
|
# - $dl_dir/data.tgz
|
|
# Himia confusion words(HI_MIA_CW) test dataset.
|
|
# From https://www.openslr.org/120
|
|
|
|
# - $dl_dir/resource.tgz
|
|
# Transcripts of (HI_MIA_CW) test dataset.
|
|
# From https://www.openslr.org/120
|
|
|
|
dl_dir=$PWD/download
|
|
train_set_channel=_7_01
|
|
enable_speed_perturb=False
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "Stage 0: Download data"
|
|
|
|
# If you have pre-downloaded HI_MIA and HI_MIA_CW dataset to /path/to/himia/,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/himia $dl_dir/
|
|
#
|
|
if [ ! -f $dl_dir/train.tar.gz ]; then
|
|
lhotse download himia $dl_dir/
|
|
fi
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/musan $dl_dir/
|
|
#
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
|
|
# If you have pre-downloaded it to /path/to/aishell,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/aishell $dl_dir/aishell
|
|
#
|
|
# The directory structure is
|
|
# aishell/
|
|
# |-- data_aishell
|
|
# | |-- transcript
|
|
# | `-- wav
|
|
# `-- resource_aishell
|
|
# |-- lexicon.txt
|
|
# `-- speaker.info
|
|
|
|
if [ ! -d $dl_dir/aishell/data_aishell/wav/train ]; then
|
|
lhotse download aishell $dl_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare HI_MIA and HI_MIA_CW manifest"
|
|
mkdir -p data/manifests
|
|
if [ ! -e data/manifests/.himia.done ]; then
|
|
lhotse prepare himia $dl_dir/HiMia data/manifests
|
|
touch data/manifests/.himia.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to data/musan
|
|
mkdir -p data/manifests
|
|
if [ ! -e data/manifests/.musan.done ]; then
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
touch data/manifests/.musan.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "Stage 3: Prepare aishell manifest"
|
|
# We assume that you have downloaded the aishell corpus
|
|
# to $dl_dir/aishell
|
|
if [ ! -f data/manifests/.aishell_manifests.done ]; then
|
|
mkdir -p data/manifests
|
|
lhotse prepare aishell $dl_dir/aishell data/manifests
|
|
touch data/manifests/.aishell_manifests.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute fbank for aishell"
|
|
if [ ! -f data/fbank/.aishell.done ]; then
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_aishell.py \
|
|
--enable-speed-perturb=${enable_speed_perturb}
|
|
touch data/fbank/.aishell.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Compute fbank for musan"
|
|
mkdir -p data/fbank
|
|
if [ ! -e data/fbank/.musan.done ]; then
|
|
./local/compute_fbank_musan.py
|
|
touch data/fbank/.musan.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
log "Stage 6: Compute fbank for HI_MIA and HI_MIA_CW dataset"
|
|
# Format of train_set_channel is "micropohone position"_"channel"
|
|
# Microphone 1 to 6 is an array with 16 channels.
|
|
# Microphone 8 only has a single channel.
|
|
# So valid examples of train_set_channel could be:
|
|
# 1_01, ..., 1_16
|
|
# 2_01, ..., 2_16
|
|
# ...
|
|
# 6_01, ..., 6_16
|
|
# 7_01
|
|
train_set_channel="_7_01"
|
|
for subset in train dev test; do
|
|
for file_type in recordings supervisions; do
|
|
src=data/manifests/himia_${file_type}_${subset}.jsonl.gz
|
|
dst=data/manifests/himia_${file_type}_${subset}${train_set_channel}.jsonl.gz
|
|
cat <(gunzip -c ${src}) | \
|
|
grep ${train_set_channel} | \
|
|
gzip -c > ${dst}
|
|
done
|
|
done
|
|
|
|
mkdir -p data/fbank
|
|
if [ ! -e data/fbank/.himia.done ]; then
|
|
./local/compute_fbank_himia.py \
|
|
--train-set-channel=${train_set_channel} \
|
|
--enable-speed-perturb=${enable_speed_perturb}
|
|
touch data/fbank/.himia.done
|
|
fi
|
|
|
|
train_file=data/fbank/cuts_train_himia${train_set_channel}-aishell-shuf.jsonl.gz
|
|
if [ ! -f ${train_file} ]; then
|
|
# SingleCutSampler is preferred for this experiment
|
|
# rather than DynamicBucketingSampler.
|
|
# Since negative audios(Aishell) tends to be longer than positive ones(HiMia).
|
|
# if DynamicBucketingSample is used, a batch may contain either all negative sample
|
|
# or positive sample.
|
|
# So `shuf` the training dataset here and use SingleCutSampler to load data.
|
|
cat <(gunzip -c data/fbank/aishell_cuts_train.jsonl.gz) \
|
|
<(gunzip -c data/fbank/cuts_train${train_set_channel}.jsonl.gz) | \
|
|
grep -v _sp | \
|
|
shuf |shuf | gzip -c > ${train_file}
|
|
fi
|
|
|
|
fi
|
|
|