icefall/egs/himia/wuw/prepare.sh
2023-03-16 20:03:57 +08:00

194 lines
5.5 KiB
Bash
Executable File

#!/usr/bin/env bash
set -eou pipefail
stage=0
stop_stage=6
# HI_MIA and aishell dataset are used in this experiment.
# musan dataset is used for data augmentation.
#
# For aishell dataset downloading and preparation,
# refer to icefall/egs/aishell/ASR/prepare.sh.
#
# For HI_MIA and HI_MIA_CW dataset,
# we assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
# Then these files will be extracted to $dl_dir/HiMia/
#
# - $dl_dir/train.tar.gz
# Himia training dataset.
# From https://www.openslr.org/85
#
# - $dl_dir/dev.tar.gz
# Himia Devlopment dataset.
# From https://www.openslr.org/85
#
# - $dl_dir/test_v2.tar.gz
# Himia test dataset.
# From https://www.openslr.org/85
#
# - $dl_dir/data.tgz
# Himia confusion words(HI_MIA_CW) test dataset.
# From https://www.openslr.org/120
# - $dl_dir/resource.tgz
# Transcripts of (HI_MIA_CW) test dataset.
# From https://www.openslr.org/120
dl_dir=$PWD/download
train_set_channel=_7_01
enable_speed_perturb=False
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded HI_MIA and HI_MIA_CW dataset to /path/to/himia/,
# you can create a symlink
#
# ln -sfv /path/to/himia $dl_dir/
#
if [ ! -f $dl_dir/train.tar.gz ]; then
lhotse download himia $dl_dir/
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
# If you have pre-downloaded it to /path/to/aishell,
# you can create a symlink
#
# ln -sfv /path/to/aishell $dl_dir/aishell
#
# The directory structure is
# aishell/
# |-- data_aishell
# | |-- transcript
# | `-- wav
# `-- resource_aishell
# |-- lexicon.txt
# `-- speaker.info
if [ ! -d $dl_dir/aishell/data_aishell/wav/train ]; then
lhotse download aishell $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare HI_MIA and HI_MIA_CW manifest"
mkdir -p data/manifests
if [ ! -e data/manifests/.himia.done ]; then
lhotse prepare himia $dl_dir/HiMia data/manifests
touch data/manifests/.himia.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare aishell manifest"
# We assume that you have downloaded the aishell corpus
# to $dl_dir/aishell
if [ ! -f data/manifests/.aishell_manifests.done ]; then
mkdir -p data/manifests
lhotse prepare aishell $dl_dir/aishell data/manifests
touch data/manifests/.aishell_manifests.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for aishell"
if [ ! -f data/fbank/.aishell.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aishell.py \
--enable-speed-perturb=${enable_speed_perturb}
touch data/fbank/.aishell.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Compute fbank for HI_MIA and HI_MIA_CW dataset"
# Format of train_set_channel is "micropohone position"_"channel"
# Microphone 1 to 6 is an array with 16 channels.
# Microphone 8 only has a single channel.
# So valid examples of train_set_channel could be:
# 1_01, ..., 1_16
# 2_01, ..., 2_16
# ...
# 6_01, ..., 6_16
# 7_01
train_set_channel="_7_01"
for subset in train dev test; do
for file_type in recordings supervisions; do
src=data/manifests/himia_${file_type}_${subset}.jsonl.gz
dst=data/manifests/himia_${file_type}_${subset}${train_set_channel}.jsonl.gz
cat <(gunzip -c ${src}) | \
grep ${train_set_channel} | \
gzip -c > ${dst}
done
done
mkdir -p data/fbank
if [ ! -e data/fbank/.himia.done ]; then
./local/compute_fbank_himia.py \
--train-set-channel=${train_set_channel} \
--enable-speed-perturb=${enable_speed_perturb}
touch data/fbank/.himia.done
fi
train_file=data/fbank/cuts_train_himia${train_set_channel}-aishell-shuf.jsonl.gz
if [ ! -f ${train_file} ]; then
# SingleCutSampler is preferred for this experiment
# rather than DynamicBucketingSampler.
# Since negative audios(Aishell) tends to be longer than positive ones(HiMia).
# if DynamicBucketingSample is used, a batch may contain either all negative sample
# or positive sample.
# So `shuf` the training dataset here and use SingleCutSampler to load data.
cat <(gunzip -c data/fbank/aishell_cuts_train.jsonl.gz) \
<(gunzip -c data/fbank/cuts_train${train_set_channel}.jsonl.gz) | \
grep -v _sp | \
shuf |shuf | gzip -c > ${train_file}
fi
fi