856 lines
32 KiB
Python

# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
#
# See ../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import List, Optional, Union, Tuple, List
from lhotse.utils import fix_random_seed
import torch
from scaling import ActivationBalancer
import random
from torch import Tensor
from torch.optim import Optimizer
import logging
class ScaledAdam(Optimizer):
"""
Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
proportional to the norm of that parameter; and also learn the scale of the parameter,
in log space, subject to upper and lower limits (as if we had factored each parameter as
param = underlying_param * log_scale.exp())
Args:
params: The parameters or param_groups to optimize (like other Optimizer subclasses)
lr: The learning rate. We will typically use a learning rate schedule that starts
at 0.03 and decreases over time, i.e. much higher than other common
optimizers.
clipping_scale: (e.g. 2.0)
A scale for gradient-clipping: if specified, the normalized gradients
over the whole model will be clipped to have 2-norm equal to
`clipping_scale` times the median 2-norm over the most recent period
of `clipping_update_period` minibatches. By "normalized gradients",
we mean after multiplying by the rms parameter value for this tensor
[for non-scalars]; this is appropriate because our update is scaled
by this quantity.
betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
Must satisfy 0 < beta <= beta2 < 1.
scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
scale of each parameter tensor and scalar parameters of the mode..
If each parameter were decomposed
as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
would be a the scaling factor on the learning rate of p_scale.
eps: A general-purpose epsilon to prevent division by zero
param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
learning the scale on the parameters (we'll constrain the rms of each non-scalar
parameter tensor to be >= this value)
param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
learning the scale on the parameters (we'll constrain the rms of each non-scalar
parameter tensor to be <= this value)
scalar_max: Maximum absolute value for scalar parameters (applicable if your
model has any parameters with numel() == 1).
size_update_period: The periodicity, in steps, with which we update the size (scale)
of the parameter tensor. This is provided to save a little time
in the update.
clipping_update_period: if clipping_scale is specified, this is the period
"""
def __init__(
self,
params,
lr=3e-02,
clipping_scale=None,
betas=(0.9, 0.98),
scalar_lr_scale=0.1,
eps=1.0e-08,
param_min_rms=1.0e-05,
param_max_rms=3.0,
scalar_max=2.0,
size_update_period=4,
clipping_update_period=100,
):
defaults = dict(
lr=lr,
clipping_scale=clipping_scale,
betas=betas,
scalar_lr_scale=scalar_lr_scale,
eps=eps,
param_min_rms=param_min_rms,
param_max_rms=param_max_rms,
scalar_max=scalar_max,
size_update_period=size_update_period,
clipping_update_period=clipping_update_period,
)
super(ScaledAdam, self).__init__(params, defaults)
def __setstate__(self, state):
super(ScaledAdam, self).__setstate__(state)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
batch = True
for group in self.param_groups:
for i,p in enumerate(group["params"]):
state = self.state[p]
# Perform optimization step
grad = p.grad
if grad.is_sparse:
raise RuntimeError(
"ScaledAdam optimizer does not support sparse gradients"
)
# State initialization
if len(state) == 0:
self._init_state(group, p, state)
if i == 0:
clipping_scale = self._get_clipping_scale(group, p, state)
self._step_one_batch(group, p, state, clipping_scale)
return loss
def _init_state(self,
group: dict,
p: Tensor,
state: dict):
"""
Initializes state dict for parameter 'p'.
Args:
group: Dict to look up configuration values.
p: The parameter that we are initializing the state for
state: Dict from string to whatever state we are initializing
"""
eps = group["eps"]
size_update_period = group["size_update_period"]
state["step"] = 0
kwargs = {'device':p.device, 'dtype':p.dtype}
# 'delta' implements conventional momentum. There are
# several different kinds of update going on, so rather than
# compute "exp_avg" like in Adam, we store and decay a
# parameter-change "delta", which combines all forms of
# update. this is equivalent to how it's done in Adam,
# except for the first few steps.
state["delta"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
numel = p.numel()
if numel > 1:
# "param_rms" just periodically records the scalar root-mean-square value of
# the parameter tensor.
param_rms = (p**2).mean().sqrt() + eps
state["param_rms"] = param_rms
state["scale_exp_avg_sq"] = torch.zeros_like(param_rms)
state["scale_grads"] = torch.zeros(size_update_period, **kwargs)
# exp_avg_sq is the weighted sum of scaled gradients. as in Adam.
state["exp_avg_sq"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
def _get_clipping_scale(self,
group: dict,
p: Tensor,
state: dict) -> float:
"""
Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
by this amount before applying the rest of the update.
This function is only to be called for the first parameter in the group.
"""
clipping_scale = group["clipping_scale"]
step = state["step"]
if clipping_scale is None or step == 0:
# no clipping. return early on step == 0 because the other
# parameters' state won't have been initialize yet.
return 1.0
clipping_update_period = group["clipping_update_period"]
tot_sumsq = torch.tensor(0.0, device=p.device)
for p in group["params"]:
state = self.state[p]
grad = p.grad
if grad.is_sparse:
raise RuntimeError(
"ScaledAdam optimizer does not support sparse gradients"
)
if p.numel() == 1:
tot_sumsq += (grad**2).sum() # sum() to change shape [1] to []
else:
tot_sumsq += (grad**2).sum() * (state["param_rms"] ** 2)
tot_norm = tot_sumsq.sqrt()
if not "model_norms" in state:
state["model_norms"] = torch.zeros(clipping_update_period,
device=p.device)
state["model_norms"][step % clipping_update_period] = tot_norm
if step % clipping_update_period == 0:
# We don't reach here if step == 0 because we
# would have returned above.
sorted_norms = state["model_norms"].sort()[0].to('cpu')
quartiles = []
for n in range(0, 5):
index = min(clipping_update_period - 1,
(clipping_update_period // 4) * n)
quartiles.append(sorted_norms[index].item())
median = quartiles[2]
threshold = clipping_scale * median
state["model_norm_threshold"] = threshold
percent_clipped = (state["num_clipped"] * 100.0 / clipping_update_period
if "num_clipped" in state else 0.0)
state["num_clipped"] = 0
quartiles = ' '.join([ '%.3e' % x for x in quartiles ])
logging.info(f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, "
f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}")
if step < clipping_update_period:
return 1.0 # We have not yet estimated a norm to clip to.
else:
model_norm_threshold = state["model_norm_threshold"]
ans = min(1.0,
(model_norm_threshold / (tot_norm + 1.0e-20)).item())
if ans < 1.0:
state["num_clipped"] += 1
if ans < 0.1:
logging.warn("Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}")
return ans
def _step_one_batch(self,
group: dict,
p: Tensor,
state: dict,
clipping_scale: float):
"""
Do the step for parameter p.
Args:
group: dict to look up configuration values
p: parameter to update
state: state-dict for p, to look up the optimizer state
"""
lr = group["lr"]
size_update_period = group["size_update_period"]
beta1 = group["betas"][0]
grad = p.grad
if clipping_scale != 1.0:
grad = grad * clipping_scale
step = state["step"]
delta = state["delta"]
delta.mul_(beta1)
numel = p.numel()
if numel > 1:
# Update the size/scale of p, and set param_rms
scale_grads = state["scale_grads"]
scale_grads[step % size_update_period] = (p * grad).sum()
if step % size_update_period == size_update_period - 1:
param_rms = state["param_rms"]
param_rms.copy_((p**2).mean().sqrt())
if step > 0:
# self._size_update() learns the overall scale on the
# parameter, by shrinking or expanding it.
self._size_update(group, scale_grads, p, state)
if numel == 1:
# For parameters with 1 element we just use regular Adam.
# Updates delta.
self._step_scalar(group, p, state)
else:
self._step(group, p, state)
state["step"] = step + 1
def _size_update(self,
group: dict,
scale_grads: Tensor,
p: Tensor,
state: dict) -> None:
"""
Called only where p.numel() > 1, this updates the scale of the parameter.
If we imagine: p = underlying_param * scale.exp(), and we are doing
gradient descent on underlying param and on scale, this function does the update
on `scale`.
Args:
group: dict to look up configuration values
scale_grads: a tensor of shape (size_update_period) containing
grads w.r.t. the scales.
p: The parameter to update
state: The state-dict of p
"""
param_rms = state["param_rms"]
beta1, beta2 = group["betas"]
size_lr = group["lr"] * group["scalar_lr_scale"]
param_min_rms = group["param_min_rms"]
param_max_rms = group["param_max_rms"]
eps = group["eps"]
step = state["step"]
size_update_period = scale_grads.shape[0]
# correct beta2 for the size update period: we will have
# faster decay at this level.
beta2_corr = beta2 ** size_update_period
scale_exp_avg_sq = state["scale_exp_avg_sq"] # scalar
scale_exp_avg_sq.mul_(beta2_corr).add_(
(scale_grads ** 2).mean(), # mean over `size_update_period` elements
alpha=1-beta2_corr)
# The 1st time we reach here is when size_step == 1.
size_step = (step + 1) // size_update_period
bias_correction2 = 1 - beta2_corr ** size_step
# we don't bother with bias_correction1; this will help prevent divergence
# at the start of training.
denom = scale_exp_avg_sq.sqrt() + eps
scale_step = -size_lr * (bias_correction2 ** 0.5) * scale_grads.sum() / denom
is_too_small = (param_rms < param_min_rms)
is_too_large = (param_rms > param_max_rms)
# when the param gets too small, just don't shrink it any further.
scale_step.masked_fill_(is_too_small, 0.0)
# when it gets too large, stop it from getting any larger.
scale_step.masked_fill_(is_too_large, -size_lr * size_update_period)
delta = state["delta"]
# the factor of (1-beta1) relates to momentum.
delta.add_(p * scale_step, alpha=(1-beta1))
def _step(self,
group: dict,
p: Tensor,
state: dict):
"""
This function does the core update of self.step(), in the case where the tensor
has more than 1 elements.
Args:
group: A dict which will be used to look up configuration values
p: The parameter to be updated
grad: The grad of p
state: The state-dict corresponding to parameter p
This function modifies p.
"""
grad = p.grad
lr = group["lr"]
beta1, beta2 = group["betas"]
eps = group["eps"]
param_min_rms = group["param_min_rms"]
step = state["step"]
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(beta2).addcmul_(grad, grad,
value=(1-beta2))
this_step = state["step"] - (state["zero_step"] if "zero_step" in state else 0)
bias_correction2 = 1 - beta2 ** (this_step + 1)
if bias_correction2 < 0.99:
# note: not in-place.
exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2)
denom = exp_avg_sq.sqrt()
denom += eps
grad = grad / denom
alpha = -lr * (1-beta1) * state["param_rms"].clamp(min=param_min_rms)
delta = state["delta"]
delta.add_(grad * alpha)
p.add_(delta)
def _step_scalar(self,
group: dict,
p: Tensor,
state: dict):
"""
A simplified form of the core update for scalar tensors, where we cannot get a good
estimate of the parameter rms.
"""
beta1, beta2 = group["betas"]
scalar_max = group["scalar_max"]
eps = group["eps"]
lr = group["lr"] * group["scalar_lr_scale"]
grad = p.grad
exp_avg_sq = state["exp_avg_sq"] # scalar
exp_avg_sq.mul_(beta2).addcmul_(grad, grad,
value=1-beta2)
# bias_correction2 is like in Adam. Don't bother with bias_correction1;
# slower update at the start will help stability anyway.
bias_correction2 = 1 - beta2 ** (state["step"] + 1)
denom = (exp_avg_sq / bias_correction2).sqrt() + eps
delta = state["delta"]
delta.add_(grad / denom, alpha=-lr*(1-beta1))
p.clamp_(min=-scalar_max, max=scalar_max)
p.add_(delta)
class LRScheduler(object):
"""
Base-class for learning rate schedulers where the learning-rate depends on both the
batch and the epoch.
"""
def __init__(self, optimizer: Optimizer, verbose: bool = False):
# Attach optimizer
if not isinstance(optimizer, Optimizer):
raise TypeError(
"{} is not an Optimizer".format(type(optimizer).__name__)
)
self.optimizer = optimizer
self.verbose = verbose
for group in optimizer.param_groups:
group.setdefault("initial_lr", group["lr"])
self.base_lrs = [
group["initial_lr"] for group in optimizer.param_groups
]
self.epoch = 0
self.batch = 0
def state_dict(self):
"""Returns the state of the scheduler as a :class:`dict`.
It contains an entry for every variable in self.__dict__ which
is not the optimizer.
"""
return {
"base_lrs": self.base_lrs,
"epoch": self.epoch,
"batch": self.batch,
}
def load_state_dict(self, state_dict):
"""Loads the schedulers state.
Args:
state_dict (dict): scheduler state. Should be an object returned
from a call to :meth:`state_dict`.
"""
self.__dict__.update(state_dict)
def get_last_lr(self) -> List[float]:
"""Return last computed learning rate by current scheduler. Will be a list of float."""
return self._last_lr
def get_lr(self):
# Compute list of learning rates from self.epoch and self.batch and
# self.base_lrs; this must be overloaded by the user.
# e.g. return [some_formula(self.batch, self.epoch, base_lr) for base_lr in self.base_lrs ]
raise NotImplementedError
def step_batch(self, batch: Optional[int] = None) -> None:
# Step the batch index, or just set it. If `batch` is specified, it
# must be the batch index from the start of training, i.e. summed over
# all epochs.
# You can call this in any order; if you don't provide 'batch', it should
# of course be called once per batch.
if batch is not None:
self.batch = batch
else:
self.batch = self.batch + 1
self._set_lrs()
def step_epoch(self, epoch: Optional[int] = None):
# Step the epoch index, or just set it. If you provide the 'epoch' arg,
# you should call this at the start of the epoch; if you don't provide the 'epoch'
# arg, you should call it at the end of the epoch.
if epoch is not None:
self.epoch = epoch
else:
self.epoch = self.epoch + 1
self._set_lrs()
def _set_lrs(self):
values = self.get_lr()
assert len(values) == len(self.optimizer.param_groups)
for i, data in enumerate(zip(self.optimizer.param_groups, values)):
param_group, lr = data
param_group["lr"] = lr
self.print_lr(self.verbose, i, lr)
self._last_lr = [group["lr"] for group in self.optimizer.param_groups]
def print_lr(self, is_verbose, group, lr):
"""Display the current learning rate."""
if is_verbose:
logging.info(
f"Epoch={self.epoch}, batch={self.batch}: adjusting learning rate"
f" of group {group} to {lr:.4e}."
)
class Eden(LRScheduler):
"""
Eden scheduler.
lr = initial_lr * (((batch**2 + lr_batches**2) / lr_batches**2) ** -0.25 *
(((epoch**2 + lr_epochs**2) / lr_epochs**2) ** -0.25))
E.g. suggest initial-lr = 0.003 (passed to optimizer).
Args:
optimizer: the optimizer to change the learning rates on
lr_batches: the number of batches after which we start significantly
decreasing the learning rate, suggest 5000.
lr_epochs: the number of epochs after which we start significantly
decreasing the learning rate, suggest 6 if you plan to do e.g.
20 to 40 epochs, but may need smaller number if dataset is huge
and you will do few epochs.
"""
def __init__(
self,
optimizer: Optimizer,
lr_batches: Union[int, float],
lr_epochs: Union[int, float],
verbose: bool = False,
):
super(Eden, self).__init__(optimizer, verbose)
self.lr_batches = lr_batches
self.lr_epochs = lr_epochs
def get_lr(self):
factor = (
(self.batch ** 2 + self.lr_batches ** 2) / self.lr_batches ** 2
) ** -0.25 * (
((self.epoch ** 2 + self.lr_epochs ** 2) / self.lr_epochs ** 2)
** -0.25
)
return [x * factor for x in self.base_lrs]
def _test_eden():
m = torch.nn.Linear(100, 100)
optim = ScaledAdam(m.parameters(), lr=0.03)
scheduler = Eden(optim, lr_batches=100, lr_epochs=2, verbose=True)
for epoch in range(10):
scheduler.step_epoch(epoch) # sets epoch to `epoch`
for step in range(20):
x = torch.randn(200, 100).detach()
x.requires_grad = True
y = m(x)
dy = torch.randn(200, 100).detach()
f = (y * dy).sum()
f.backward()
optim.step()
scheduler.step_batch()
optim.zero_grad()
logging.info(f"last lr = {scheduler.get_last_lr()}")
logging.info(f"state dict = {scheduler.state_dict()}")
# This is included mostly as a baseline for ScaledAdam.
class Eve(Optimizer):
"""
Implements Eve algorithm. This is a modified version of AdamW with a special
way of setting the weight-decay / shrinkage-factor, which is designed to make the
rms of the parameters approach a particular target_rms (default: 0.1). This is
for use with networks with 'scaled' versions of modules (see scaling.py), which
will be close to invariant to the absolute scale on the parameter matrix.
The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_.
The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_.
Eve is unpublished so far.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay coefficient (default: 3e-4;
this value means that the weight would decay significantly after
about 3k minibatches. Is not multiplied by learning rate, but
is conditional on RMS-value of parameter being > target_rms.
target_rms (float, optional): target root-mean-square value of
parameters, if they fall below this we will stop applying weight decay.
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _Decoupled Weight Decay Regularization:
https://arxiv.org/abs/1711.05101
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.98),
eps=1e-8,
weight_decay=1e-3,
target_rms=0.1,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter at index 0: {}".format(betas[0])
)
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter at index 1: {}".format(betas[1])
)
if not 0 <= weight_decay <= 0.1:
raise ValueError(
"Invalid weight_decay value: {}".format(weight_decay)
)
if not 0 < target_rms <= 10.0:
raise ValueError("Invalid target_rms value: {}".format(target_rms))
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
target_rms=target_rms,
)
super(Eve, self).__init__(params, defaults)
def __setstate__(self, state):
super(Eve, self).__setstate__(state)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
# Perform optimization step
grad = p.grad
if grad.is_sparse:
raise RuntimeError(
"AdamW does not support sparse gradients"
)
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
state["step"] += 1
bias_correction1 = 1 - beta1 ** state["step"]
bias_correction2 = 1 - beta2 ** state["step"]
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = (exp_avg_sq.sqrt() * (bias_correction2 ** -0.5)).add_(
group["eps"]
)
step_size = group["lr"] / bias_correction1
target_rms = group["target_rms"]
weight_decay = group["weight_decay"]
if p.numel() > 1:
# avoid applying this weight-decay on "scaling factors"
# (which are scalar).
is_above_target_rms = p.norm() > (
target_rms * (p.numel() ** 0.5)
)
p.mul_(1 - (weight_decay * is_above_target_rms))
p.addcdiv_(exp_avg, denom, value=-step_size)
if random.random() < 0.0005:
step = (exp_avg/denom) * step_size
logging.info(f"Delta rms = {(step**2).mean().item()}, shape = {step.shape}")
return loss
def _test_scaled_adam(hidden_dim: int):
import timeit
from scaling import ScaledLinear
E = 100
B = 4
T = 2
logging.info("in test_eve_cain")
#device = torch.device('cuda')
device = torch.device('cpu')
dtype = torch.float32
fix_random_seed(42)
# these input_magnitudes and output_magnitudes are to test that
# Abel is working as we expect and is able to adjust scales of
# different dims differently.
input_magnitudes = (1.0 * torch.randn(E, dtype=dtype, device=device)).exp()
output_magnitudes = (1.0 * torch.randn(E, dtype=dtype, device=device)).exp()
for iter in [1, 0]:
fix_random_seed(42)
Linear = torch.nn.Linear if iter == 0 else ScaledLinear
m = torch.nn.Sequential(Linear(E, hidden_dim),
torch.nn.PReLU(),
Linear(hidden_dim, hidden_dim),
torch.nn.PReLU(),
Linear(hidden_dim, E),
).to(device)
train_pairs = [ (100.0 * torch.randn(B, T, E, device=device, dtype=dtype) * input_magnitudes,
torch.randn(B, T, E, device=device, dtype=dtype) * output_magnitudes) for _ in range(20) ]
if iter == 0: optim = Eve(m.parameters(), lr=0.003)
elif iter == 1: optim = ScaledAdam(m.parameters(), lr=0.03, clipping_scale=2.0)
scheduler = Eden(optim, lr_batches=200, lr_epochs=5, verbose=False)
start = timeit.default_timer()
avg_loss = 0.0
for epoch in range(180):
scheduler.step_epoch()
#if epoch == 100 and iter in [2,3]:
# optim.reset_speedup() # check it doesn't crash.
#if epoch == 130:
# opts = diagnostics.TensorDiagnosticOptions(
# 2 ** 22
# ) # allow 4 megabytes per sub-module
# diagnostic = diagnostics.attach_diagnostics(m, opts)
for n, (x,y) in enumerate(train_pairs):
y_out = m(x)
loss = ((y_out - y)**2).mean() * 100.0
if epoch == 0 and n == 0:
avg_loss = loss.item()
else:
avg_loss = 0.98 * avg_loss + 0.02 * loss.item()
if n == 0 and epoch % 5 == 0:
#norm1 = '%.2e' % (m[0].weight**2).mean().sqrt().item()
#norm1b = '%.2e' % (m[0].bias**2).mean().sqrt().item()
#norm2 = '%.2e' % (m[2].weight**2).mean().sqrt().item()
#norm2b = '%.2e' % (m[2].bias**2).mean().sqrt().item()
#scale1 = '%.2e' % (m[0].weight_scale.exp().item())
#scale1b = '%.2e' % (m[0].bias_scale.exp().item())
#scale2 = '%.2e' % (m[2].weight_scale.exp().item())
#scale2b = '%.2e' % (m[2].bias_scale.exp().item())
lr = scheduler.get_last_lr()[0]
logging.info(f"Iter {iter}, epoch {epoch}, batch {n}, avg_loss {avg_loss:.4g}, lr={lr:.4e}") #, norms={norm1,norm1b,norm2,norm2b}") # scales={scale1,scale1b,scale2,scale2b}
loss.log().backward()
optim.step()
optim.zero_grad()
scheduler.step_batch()
#diagnostic.print_diagnostics()
stop = timeit.default_timer()
logging.info(f"Iter={iter}, Time taken: {stop - start}")
logging.info(f"last lr = {scheduler.get_last_lr()}")
#logging.info("state dict = ", scheduler.state_dict())
#logging.info("optim state_dict = ", optim.state_dict())
logging.info(f"input_magnitudes = {input_magnitudes}")
logging.info(f"output_magnitudes = {output_magnitudes}")
if __name__ == "__main__":
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
logging.getLogger().setLevel(logging.INFO)
import subprocess
s = subprocess.check_output("git status -uno .; git log -1; git diff HEAD .", shell=True)
logging.info(s)
import sys
if len(sys.argv) > 1:
hidden_dim = int(sys.argv[1])
else:
hidden_dim = 200
_test_scaled_adam(hidden_dim)
_test_eden()