icefall/test/test_mmi_graph_compiler.py
Fangjun Kuang 53b79fafa7
Add MMI training with word pieces as modelling unit. (#6)
* Fix an error in TDNN-LSTM training.

* WIP: Refactoring

* Refactor transformer.py

* Remove unused code.

* Minor fixes.

* Fix decoder padding mask.

* Add MMI training with word pieces.

* Remove unused files.

* Minor fixes.

* Refactoring.

* Minor fixes.

* Use pre-computed alignments in LF-MMI training.

* Minor fixes.

* Update decoding script.

* Add doc about how to check and use extracted alignments.

* Fix style issues.

* Fix typos.

* Fix style issues.

* Disable macOS tests for now.
2021-10-18 15:20:32 +08:00

197 lines
5.6 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
You can run this file in one of the two ways:
(1) cd icefall; pytest test/test_mmi_graph_compiler.py
(2) cd icefall; ./test/test_mmi_graph_compiler.py
"""
import copy
import os
import shutil
import sys
from pathlib import Path
import k2
import sentencepiece as spm
from icefall.mmi_graph_compiler import MmiTrainingGraphCompiler
TMP_DIR = "/tmp/icefall-test-mmi-graph-compiler"
USING_PYTEST = "pytest" in sys.modules
ICEFALL_DIR = Path(__file__).resolve().parent.parent
def generate_test_data():
Path(TMP_DIR).mkdir(exist_ok=True)
sentences = """
cat tac cat cat
at at cat at cat cat
tac at ta at at
at cat ct ct ta ct ct cat tac
cat cat cat cat
at at at at at at at
"""
transcript = Path(TMP_DIR) / "transcript_words.txt"
with open(transcript, "w") as f:
for line in sentences.strip().split("\n"):
f.write(f"{line}\n")
words = """
<eps> 0
<UNK> 1
at 2
cat 3
ct 4
ta 5
tac 6
#0 7
<s> 8
</s> 9
"""
word_txt = Path(TMP_DIR) / "words.txt"
with open(word_txt, "w") as f:
for line in words.strip().split("\n"):
f.write(f"{line}\n")
vocab_size = 8
os.system(
f"""
cd {ICEFALL_DIR}/egs/librispeech/ASR
./local/train_bpe_model.py \
--lang-dir {TMP_DIR} \
--vocab-size {vocab_size} \
--transcript {transcript}
./local/prepare_lang_bpe.py --lang-dir {TMP_DIR} --debug 0
./local/convert_transcript_words_to_tokens.py \
--lexicon {TMP_DIR}/lexicon.txt \
--transcript {transcript} \
--oov "<UNK>" \
> {TMP_DIR}/transcript_tokens.txt
./shared/make_kn_lm.py \
-ngram-order 2 \
-text {TMP_DIR}/transcript_tokens.txt \
-lm {TMP_DIR}/P.arpa
python3 -m kaldilm \
--read-symbol-table="{TMP_DIR}/tokens.txt" \
--disambig-symbol='#0' \
--max-order=2 \
{TMP_DIR}/P.arpa > {TMP_DIR}/P.fst.txt
"""
)
def delete_test_data():
shutil.rmtree(TMP_DIR)
def mmi_graph_compiler_test():
# Caution:
# You have to uncomment
# del transcript_fsa.aux_labels
# in mmi_graph_compiler.py
# to see the correct aux_labels in *.svg
graph_compiler = MmiTrainingGraphCompiler(
lang_dir=TMP_DIR, uniq_filename="lexicon.txt"
)
print(graph_compiler.device)
L_inv = graph_compiler.L_inv
L = k2.invert(L_inv)
L.labels_sym = graph_compiler.lexicon.token_table
L.aux_labels_sym = graph_compiler.lexicon.word_table
L.draw(f"{TMP_DIR}/L.svg", title="L")
L_inv.labels_sym = graph_compiler.lexicon.word_table
L_inv.aux_labels_sym = graph_compiler.lexicon.token_table
L_inv.draw(f"{TMP_DIR}/L_inv.svg", title="L")
ctc_topo_P = graph_compiler.ctc_topo_P
ctc_topo_P.labels_sym = copy.deepcopy(graph_compiler.lexicon.token_table)
ctc_topo_P.labels_sym._id2sym[0] = "<blk>"
ctc_topo_P.labels_sym._sym2id["<blk>"] = 0
ctc_topo_P.aux_labels_sym = graph_compiler.lexicon.token_table
ctc_topo_P.draw(f"{TMP_DIR}/ctc_topo_P.svg", title="ctc_topo_P")
print(ctc_topo_P.num_arcs)
print(k2.connect(ctc_topo_P).num_arcs)
with open(str(TMP_DIR) + "/P.fst.txt") as f:
# P is not an acceptor because there is
# a back-off state, whose incoming arcs
# have label #0 and aux_label 0 (i.e., <eps>).
P = k2.Fsa.from_openfst(f.read(), acceptor=False)
P.labels_sym = graph_compiler.lexicon.token_table
P.aux_labels_sym = graph_compiler.lexicon.token_table
P.draw(f"{TMP_DIR}/P.svg", title="P")
ctc_topo = k2.ctc_topo(max(graph_compiler.lexicon.tokens), False)
ctc_topo.labels_sym = ctc_topo_P.labels_sym
ctc_topo.aux_labels_sym = graph_compiler.lexicon.token_table
ctc_topo.draw(f"{TMP_DIR}/ctc_topo.svg", title="ctc_topo")
print("p num arcs", P.num_arcs)
print("ctc_topo num arcs", ctc_topo.num_arcs)
print("ctc_topo_P num arcs", ctc_topo_P.num_arcs)
texts = ["cat at ct", "at ta", "cat tac"]
transcript_fsa = graph_compiler.build_transcript_fsa(texts)
transcript_fsa[0].draw(f"{TMP_DIR}/cat_at_ct.svg", title="cat_at_ct")
transcript_fsa[1].draw(f"{TMP_DIR}/at_ta.svg", title="at_ta")
transcript_fsa[2].draw(f"{TMP_DIR}/cat_tac.svg", title="cat_tac")
num_graphs, den_graphs = graph_compiler.compile(texts, replicate_den=True)
num_graphs[0].draw(f"{TMP_DIR}/num_cat_at_ct.svg", title="num_cat_at_ct")
num_graphs[1].draw(f"{TMP_DIR}/num_at_ta.svg", title="num_at_ta")
num_graphs[2].draw(f"{TMP_DIR}/num_cat_tac.svg", title="num_cat_tac")
den_graphs[0].draw(f"{TMP_DIR}/den_cat_at_ct.svg", title="den_cat_at_ct")
den_graphs[2].draw(f"{TMP_DIR}/den_cat_tac.svg", title="den_cat_tac")
sp = spm.SentencePieceProcessor()
sp.load(f"{TMP_DIR}/bpe.model")
texts = ["cat at cat", "at tac"]
token_ids = graph_compiler.texts_to_ids(texts)
expected_token_ids = sp.encode(texts)
assert token_ids == expected_token_ids
def test_main():
generate_test_data()
mmi_graph_compiler_test()
if USING_PYTEST:
delete_test_data()
def main():
test_main()
if __name__ == "__main__" and not USING_PYTEST:
main()