icefall/egs/yesno/ASR/tdnn/decode.py
Fangjun Kuang fba5e67d5e
Fix CI tests. (#1974)
- Introduce unified AMP helpers (create_grad_scaler, torch_autocast) to handle 
  deprecations in PyTorch ≥2.3.0

- Replace direct uses of torch.cuda.amp.GradScaler and torch.cuda.amp.autocast 
  with the new utilities across all training and inference scripts

- Update all torch.load calls to include weights_only=False for compatibility with 
  newer PyTorch versions
2025-07-01 13:47:55 +08:00

322 lines
8.9 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import logging
from pathlib import Path
from typing import List, Tuple
import k2
import torch
import torch.nn as nn
from asr_datamodule import YesNoAsrDataModule
from model import Tdnn
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.decode import get_lattice, one_best_decoding
from icefall.env import get_env_info
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
get_texts,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=14,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=2,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
parser.add_argument(
"--export",
type=str2bool,
default=False,
help="""When enabled, the averaged model is saved to
tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved.
pretrained.pt contains a dict {"model": model.state_dict()},
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
""",
)
return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
"exp_dir": Path("tdnn/exp/"),
"lang_dir": Path("data/lang_phone"),
"feature_dim": 23,
"search_beam": 20,
"output_beam": 8,
"min_active_states": 30,
"max_active_states": 10000,
"use_double_scores": True,
}
)
return params
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
HLG: k2.Fsa,
batch: dict,
word_table: k2.SymbolTable,
) -> List[List[int]]:
"""Decode one batch and return the result in a list-of-list.
Each sub list contains the word IDs for an utterance in the batch.
Args:
params:
It's the return value of :func:`get_params`.
- params.method is "1best", it uses 1best decoding.
- params.method is "nbest", it uses nbest decoding.
model:
The neural model.
HLG:
The decoding graph.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
(https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py)
word_table:
It is the word symbol table.
Returns:
Return the decoding result. `len(ans)` == batch size.
"""
device = HLG.device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
nnet_output = model(feature)
# nnet_output is (N, T, C)
batch_size = nnet_output.shape[0]
supervision_segments = torch.tensor(
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
dtype=torch.int32,
)
lattice = get_lattice(
nnet_output=nnet_output,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
min_active_states=params.min_active_states,
max_active_states=params.max_active_states,
)
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
hyps = get_texts(best_path)
hyps = [[word_table[i] for i in ids] for ids in hyps]
return hyps
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
HLG: k2.Fsa,
word_table: k2.SymbolTable,
) -> List[Tuple[str, List[str], List[str]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
HLG:
The decoding graph.
word_table:
It is word symbol table.
Returns:
Return a tuple contains two elements (ref_text, hyp_text):
The first is the reference transcript, and the second is the
predicted result.
"""
results = []
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
results = []
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps = decode_one_batch(
params=params,
model=model,
HLG=HLG,
batch=batch,
word_table=word_table,
)
this_batch = []
assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_words = ref_text.split()
this_batch.append((cut_id, ref_words, hyp_words))
results.extend(this_batch)
num_cuts += len(batch["supervisions"]["text"])
if batch_idx % 100 == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return results
def save_results(
exp_dir: Path,
test_set_name: str,
results: List[Tuple[str, List[str], List[str]]],
) -> None:
"""Save results to `exp_dir`.
Args:
exp_dir:
The output directory. This function create the following files inside
this directory:
- recogs-{test_set_name}.text
It contains the reference and hypothesis results, like below::
ref=['NO', 'NO', 'NO', 'YES', 'NO', 'NO', 'NO', 'YES']
hyp=['NO', 'NO', 'NO', 'YES', 'NO', 'NO', 'NO', 'YES']
ref=['NO', 'NO', 'YES', 'NO', 'YES', 'NO', 'NO', 'YES']
hyp=['NO', 'NO', 'YES', 'NO', 'YES', 'NO', 'NO', 'YES']
- errs-{test_set_name}.txt
It contains the detailed WER.
test_set_name:
The name of the test set, which will be part of the result filename.
results:
A list of tuples, each of which contains (ref_words, hyp_words).
Returns:
Return None.
"""
recog_path = exp_dir / f"recogs-{test_set_name}.txt"
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = exp_dir / f"errs-{test_set_name}.txt"
with open(errs_filename, "w") as f:
write_error_stats(f, f"{test_set_name}", results)
logging.info("Wrote detailed error stats to {}".format(errs_filename))
@torch.no_grad()
def main():
parser = get_parser()
YesNoAsrDataModule.add_arguments(parser)
args = parser.parse_args()
params = get_params()
params.update(vars(args))
params["env_info"] = get_env_info()
setup_logger(f"{params.exp_dir}/log/log-decode")
logging.info("Decoding started")
logging.info(params)
lexicon = Lexicon(params.lang_dir)
max_token_id = max(lexicon.tokens)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
HLG = k2.Fsa.from_dict(
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu", weights_only=False)
)
HLG = HLG.to(device)
assert HLG.requires_grad is False
model = Tdnn(
num_features=params.feature_dim,
num_classes=max_token_id + 1, # +1 for the blank symbol
)
if params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.load_state_dict(average_checkpoints(filenames))
if params.export:
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
torch.save({"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt")
return
model.to(device)
model.eval()
# we need cut ids to display recognition results.
args.return_cuts = True
yes_no = YesNoAsrDataModule(args)
test_dl = yes_no.test_dataloaders()
results = decode_dataset(
dl=test_dl,
params=params,
model=model,
HLG=HLG,
word_table=lexicon.word_table,
)
save_results(exp_dir=params.exp_dir, test_set_name="test_set", results=results)
logging.info("Done!")
if __name__ == "__main__":
main()