mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
389 lines
12 KiB
Python
Executable File
389 lines
12 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# This script converts several saved checkpoints
|
|
# to a single one using model averaging.
|
|
"""
|
|
Usage:
|
|
|
|
(1) Export to torchscript model using torch.jit.script()
|
|
|
|
./pruned_transducer_stateless2/export.py \
|
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
|
--tokens data/lang_char/tokens.txt \
|
|
--epoch 10 \
|
|
--avg 2 \
|
|
--jit 1
|
|
|
|
It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later
|
|
load it by `torch.jit.load("cpu_jit.pt")`.
|
|
|
|
Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python
|
|
are on CPU. You can use `to("cuda")` to move them to a CUDA device.
|
|
|
|
Please refer to
|
|
https://k2-fsa.github.io/sherpa/python/offline_asr/conformer/index.html
|
|
for how to use `cpu_jit.pt` for speech recognition.
|
|
|
|
It will also generate 3 other files: `encoder_jit_script.pt`,
|
|
`decoder_jit_script.pt`, and `joiner_jit_script.pt`. Check ./jit_pretrained.py
|
|
for how to use them.
|
|
|
|
(2) Export to torchscript model using torch.jit.trace()
|
|
|
|
./pruned_transducer_stateless2/export.py \
|
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
|
--tokens data/lang_char/tokens.txt \
|
|
--epoch 10 \
|
|
--avg 2 \
|
|
--jit-trace 1
|
|
|
|
It will generate the following files:
|
|
- encoder_jit_trace.pt
|
|
- decoder_jit_trace.pt
|
|
- joiner_jit_trace.pt
|
|
|
|
Check ./jit_pretrained.py for usage.
|
|
|
|
(3) Export `model.state_dict()`
|
|
|
|
./pruned_transducer_stateless2/export.py \
|
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
|
--tokens data/lang_char/tokens.txt \
|
|
--epoch 10 \
|
|
--avg 2
|
|
|
|
It will generate a file exp_dir/pretrained.pt
|
|
|
|
To use the generated file with `pruned_transducer_stateless2/decode.py`,
|
|
you can do:
|
|
|
|
cd /path/to/exp_dir
|
|
ln -s pretrained.pt epoch-9999.pt
|
|
|
|
cd /path/to/egs/wenetspeech/ASR
|
|
./pruned_transducer_stateless2/decode.py \
|
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
|
--epoch 9999 \
|
|
--avg 1 \
|
|
--max-duration 100 \
|
|
--lang-dir data/lang_char
|
|
|
|
You can find pretrained models at
|
|
https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2/tree/main/exp
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import k2
|
|
import torch
|
|
import torch.nn as nn
|
|
from scaling_converter import convert_scaled_to_non_scaled
|
|
from train import get_params, get_transducer_model
|
|
|
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
|
from icefall.utils import num_tokens, str2bool
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=28,
|
|
help="It specifies the checkpoint to use for decoding."
|
|
"Note: Epoch counts from 0.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=15,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch'. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="pruned_transducer_stateless2/exp",
|
|
help="""It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tokens",
|
|
type=str,
|
|
default="data/lang_char/tokens.txt",
|
|
help="Path to the tokens.txt",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--jit",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""True to save a model after applying torch.jit.script.
|
|
It will generate 4 files:
|
|
- encoder_jit_script.pt
|
|
- decoder_jit_script.pt
|
|
- joiner_jit_script.pt
|
|
- cpu_jit.pt (which combines the above 3 files)
|
|
|
|
Check ./jit_pretrained.py for how to use xxx_jit_script.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--jit-trace",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""True to save a model after applying torch.jit.trace.
|
|
It will generate 3 files:
|
|
- encoder_jit_trace.pt
|
|
- decoder_jit_trace.pt
|
|
- joiner_jit_trace.pt
|
|
|
|
Check ./jit_pretrained.py for how to use them.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def export_encoder_model_jit_script(
|
|
encoder_model: nn.Module,
|
|
encoder_filename: str,
|
|
) -> None:
|
|
"""Export the given encoder model with torch.jit.script()
|
|
|
|
Args:
|
|
encoder_model:
|
|
The input encoder model
|
|
encoder_filename:
|
|
The filename to save the exported model.
|
|
"""
|
|
script_model = torch.jit.script(encoder_model)
|
|
script_model.save(encoder_filename)
|
|
logging.info(f"Saved to {encoder_filename}")
|
|
|
|
|
|
def export_decoder_model_jit_script(
|
|
decoder_model: nn.Module,
|
|
decoder_filename: str,
|
|
) -> None:
|
|
"""Export the given decoder model with torch.jit.script()
|
|
|
|
Args:
|
|
decoder_model:
|
|
The input decoder model
|
|
decoder_filename:
|
|
The filename to save the exported model.
|
|
"""
|
|
script_model = torch.jit.script(decoder_model)
|
|
script_model.save(decoder_filename)
|
|
logging.info(f"Saved to {decoder_filename}")
|
|
|
|
|
|
def export_joiner_model_jit_script(
|
|
joiner_model: nn.Module,
|
|
joiner_filename: str,
|
|
) -> None:
|
|
"""Export the given joiner model with torch.jit.trace()
|
|
|
|
Args:
|
|
joiner_model:
|
|
The input joiner model
|
|
joiner_filename:
|
|
The filename to save the exported model.
|
|
"""
|
|
script_model = torch.jit.script(joiner_model)
|
|
script_model.save(joiner_filename)
|
|
logging.info(f"Saved to {joiner_filename}")
|
|
|
|
|
|
def export_encoder_model_jit_trace(
|
|
encoder_model: nn.Module,
|
|
encoder_filename: str,
|
|
) -> None:
|
|
"""Export the given encoder model with torch.jit.trace()
|
|
|
|
Note: The warmup argument is fixed to 1.
|
|
|
|
Args:
|
|
encoder_model:
|
|
The input encoder model
|
|
encoder_filename:
|
|
The filename to save the exported model.
|
|
"""
|
|
x = torch.zeros(1, 100, 80, dtype=torch.float32)
|
|
x_lens = torch.tensor([100], dtype=torch.int64)
|
|
|
|
traced_model = torch.jit.trace(encoder_model, (x, x_lens))
|
|
traced_model.save(encoder_filename)
|
|
logging.info(f"Saved to {encoder_filename}")
|
|
|
|
|
|
def export_decoder_model_jit_trace(
|
|
decoder_model: nn.Module,
|
|
decoder_filename: str,
|
|
) -> None:
|
|
"""Export the given decoder model with torch.jit.trace()
|
|
|
|
Note: The argument need_pad is fixed to False.
|
|
|
|
Args:
|
|
decoder_model:
|
|
The input decoder model
|
|
decoder_filename:
|
|
The filename to save the exported model.
|
|
"""
|
|
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
|
|
need_pad = torch.tensor([False])
|
|
|
|
traced_model = torch.jit.trace(decoder_model, (y, need_pad))
|
|
traced_model.save(decoder_filename)
|
|
logging.info(f"Saved to {decoder_filename}")
|
|
|
|
|
|
def export_joiner_model_jit_trace(
|
|
joiner_model: nn.Module,
|
|
joiner_filename: str,
|
|
) -> None:
|
|
"""Export the given joiner model with torch.jit.trace()
|
|
|
|
Note: The argument project_input is fixed to True. A user should not
|
|
project the encoder_out/decoder_out by himself/herself. The exported joiner
|
|
will do that for the user.
|
|
|
|
Args:
|
|
joiner_model:
|
|
The input joiner model
|
|
joiner_filename:
|
|
The filename to save the exported model.
|
|
|
|
"""
|
|
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
|
|
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
|
|
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
|
|
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
|
|
|
|
traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out))
|
|
traced_model.save(joiner_filename)
|
|
logging.info(f"Saved to {joiner_filename}")
|
|
|
|
|
|
def main():
|
|
args = get_parser().parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
token_table = k2.SymbolTable.from_file(params.tokens)
|
|
params.blank_id = token_table["<blk>"]
|
|
params.vocab_size = num_tokens(token_table) + 1
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_transducer_model(params)
|
|
|
|
model.to(device)
|
|
|
|
if params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if start >= 0:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
|
|
model.to("cpu")
|
|
model.eval()
|
|
|
|
if params.jit:
|
|
convert_scaled_to_non_scaled(model, inplace=True)
|
|
logging.info("Using torch.jit.script")
|
|
# We won't use the forward() method of the model in C++, so just ignore
|
|
# it here.
|
|
# Otherwise, one of its arguments is a ragged tensor and is not
|
|
# torch scriptabe.
|
|
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
|
model = torch.jit.script(model)
|
|
filename = params.exp_dir / "cpu_jit.pt"
|
|
model.save(str(filename))
|
|
logging.info(f"Saved to {filename}")
|
|
|
|
# Also export encoder/decoder/joiner separately
|
|
encoder_filename = params.exp_dir / "encoder_jit_script.pt"
|
|
export_encoder_model_jit_script(model.encoder, encoder_filename)
|
|
|
|
decoder_filename = params.exp_dir / "decoder_jit_script.pt"
|
|
export_decoder_model_jit_script(model.decoder, decoder_filename)
|
|
|
|
joiner_filename = params.exp_dir / "joiner_jit_script.pt"
|
|
export_joiner_model_jit_script(model.joiner, joiner_filename)
|
|
elif params.jit_trace is True:
|
|
convert_scaled_to_non_scaled(model, inplace=True)
|
|
logging.info("Using torch.jit.trace()")
|
|
encoder_filename = params.exp_dir / "encoder_jit_trace.pt"
|
|
export_encoder_model_jit_trace(model.encoder, encoder_filename)
|
|
|
|
decoder_filename = params.exp_dir / "decoder_jit_trace.pt"
|
|
export_decoder_model_jit_trace(model.decoder, decoder_filename)
|
|
|
|
joiner_filename = params.exp_dir / "joiner_jit_trace.pt"
|
|
export_joiner_model_jit_trace(model.joiner, joiner_filename)
|
|
else:
|
|
logging.info("Not using torch.jit.script")
|
|
# Save it using a format so that it can be loaded
|
|
# by :func:`load_checkpoint`
|
|
filename = params.exp_dir / "pretrained.pt"
|
|
torch.save({"model": model.state_dict()}, str(filename))
|
|
logging.info(f"Saved to {filename}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|