389 lines
12 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script converts several saved checkpoints
# to a single one using model averaging.
"""
Usage:
(1) Export to torchscript model using torch.jit.script()
./pruned_transducer_stateless2/export.py \
--exp-dir ./pruned_transducer_stateless2/exp \
--tokens data/lang_char/tokens.txt \
--epoch 10 \
--avg 2 \
--jit 1
It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later
load it by `torch.jit.load("cpu_jit.pt")`.
Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python
are on CPU. You can use `to("cuda")` to move them to a CUDA device.
Please refer to
https://k2-fsa.github.io/sherpa/python/offline_asr/conformer/index.html
for how to use `cpu_jit.pt` for speech recognition.
It will also generate 3 other files: `encoder_jit_script.pt`,
`decoder_jit_script.pt`, and `joiner_jit_script.pt`. Check ./jit_pretrained.py
for how to use them.
(2) Export to torchscript model using torch.jit.trace()
./pruned_transducer_stateless2/export.py \
--exp-dir ./pruned_transducer_stateless2/exp \
--tokens data/lang_char/tokens.txt \
--epoch 10 \
--avg 2 \
--jit-trace 1
It will generate the following files:
- encoder_jit_trace.pt
- decoder_jit_trace.pt
- joiner_jit_trace.pt
Check ./jit_pretrained.py for usage.
(3) Export `model.state_dict()`
./pruned_transducer_stateless2/export.py \
--exp-dir ./pruned_transducer_stateless2/exp \
--tokens data/lang_char/tokens.txt \
--epoch 10 \
--avg 2
It will generate a file exp_dir/pretrained.pt
To use the generated file with `pruned_transducer_stateless2/decode.py`,
you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/wenetspeech/ASR
./pruned_transducer_stateless2/decode.py \
--exp-dir ./pruned_transducer_stateless2/exp \
--epoch 9999 \
--avg 1 \
--max-duration 100 \
--lang-dir data/lang_char
You can find pretrained models at
https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2/tree/main/exp
"""
import argparse
import logging
from pathlib import Path
import k2
import torch
import torch.nn as nn
from scaling_converter import convert_scaled_to_non_scaled
from train import get_params, get_transducer_model
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.utils import num_tokens, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless2/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--tokens",
type=str,
default="data/lang_char/tokens.txt",
help="Path to the tokens.txt",
)
parser.add_argument(
"--jit",
type=str2bool,
default=False,
help="""True to save a model after applying torch.jit.script.
It will generate 4 files:
- encoder_jit_script.pt
- decoder_jit_script.pt
- joiner_jit_script.pt
- cpu_jit.pt (which combines the above 3 files)
Check ./jit_pretrained.py for how to use xxx_jit_script.pt
""",
)
parser.add_argument(
"--jit-trace",
type=str2bool,
default=False,
help="""True to save a model after applying torch.jit.trace.
It will generate 3 files:
- encoder_jit_trace.pt
- decoder_jit_trace.pt
- joiner_jit_trace.pt
Check ./jit_pretrained.py for how to use them.
""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
return parser
def export_encoder_model_jit_script(
encoder_model: nn.Module,
encoder_filename: str,
) -> None:
"""Export the given encoder model with torch.jit.script()
Args:
encoder_model:
The input encoder model
encoder_filename:
The filename to save the exported model.
"""
script_model = torch.jit.script(encoder_model)
script_model.save(encoder_filename)
logging.info(f"Saved to {encoder_filename}")
def export_decoder_model_jit_script(
decoder_model: nn.Module,
decoder_filename: str,
) -> None:
"""Export the given decoder model with torch.jit.script()
Args:
decoder_model:
The input decoder model
decoder_filename:
The filename to save the exported model.
"""
script_model = torch.jit.script(decoder_model)
script_model.save(decoder_filename)
logging.info(f"Saved to {decoder_filename}")
def export_joiner_model_jit_script(
joiner_model: nn.Module,
joiner_filename: str,
) -> None:
"""Export the given joiner model with torch.jit.trace()
Args:
joiner_model:
The input joiner model
joiner_filename:
The filename to save the exported model.
"""
script_model = torch.jit.script(joiner_model)
script_model.save(joiner_filename)
logging.info(f"Saved to {joiner_filename}")
def export_encoder_model_jit_trace(
encoder_model: nn.Module,
encoder_filename: str,
) -> None:
"""Export the given encoder model with torch.jit.trace()
Note: The warmup argument is fixed to 1.
Args:
encoder_model:
The input encoder model
encoder_filename:
The filename to save the exported model.
"""
x = torch.zeros(1, 100, 80, dtype=torch.float32)
x_lens = torch.tensor([100], dtype=torch.int64)
traced_model = torch.jit.trace(encoder_model, (x, x_lens))
traced_model.save(encoder_filename)
logging.info(f"Saved to {encoder_filename}")
def export_decoder_model_jit_trace(
decoder_model: nn.Module,
decoder_filename: str,
) -> None:
"""Export the given decoder model with torch.jit.trace()
Note: The argument need_pad is fixed to False.
Args:
decoder_model:
The input decoder model
decoder_filename:
The filename to save the exported model.
"""
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
need_pad = torch.tensor([False])
traced_model = torch.jit.trace(decoder_model, (y, need_pad))
traced_model.save(decoder_filename)
logging.info(f"Saved to {decoder_filename}")
def export_joiner_model_jit_trace(
joiner_model: nn.Module,
joiner_filename: str,
) -> None:
"""Export the given joiner model with torch.jit.trace()
Note: The argument project_input is fixed to True. A user should not
project the encoder_out/decoder_out by himself/herself. The exported joiner
will do that for the user.
Args:
joiner_model:
The input joiner model
joiner_filename:
The filename to save the exported model.
"""
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out))
traced_model.save(joiner_filename)
logging.info(f"Saved to {joiner_filename}")
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
token_table = k2.SymbolTable.from_file(params.tokens)
params.blank_id = token_table["<blk>"]
params.vocab_size = num_tokens(token_table) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
model.to(device)
if params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
model.to("cpu")
model.eval()
if params.jit:
convert_scaled_to_non_scaled(model, inplace=True)
logging.info("Using torch.jit.script")
# We won't use the forward() method of the model in C++, so just ignore
# it here.
# Otherwise, one of its arguments is a ragged tensor and is not
# torch scriptabe.
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
model = torch.jit.script(model)
filename = params.exp_dir / "cpu_jit.pt"
model.save(str(filename))
logging.info(f"Saved to {filename}")
# Also export encoder/decoder/joiner separately
encoder_filename = params.exp_dir / "encoder_jit_script.pt"
export_encoder_model_jit_script(model.encoder, encoder_filename)
decoder_filename = params.exp_dir / "decoder_jit_script.pt"
export_decoder_model_jit_script(model.decoder, decoder_filename)
joiner_filename = params.exp_dir / "joiner_jit_script.pt"
export_joiner_model_jit_script(model.joiner, joiner_filename)
elif params.jit_trace is True:
convert_scaled_to_non_scaled(model, inplace=True)
logging.info("Using torch.jit.trace()")
encoder_filename = params.exp_dir / "encoder_jit_trace.pt"
export_encoder_model_jit_trace(model.encoder, encoder_filename)
decoder_filename = params.exp_dir / "decoder_jit_trace.pt"
export_decoder_model_jit_trace(model.decoder, decoder_filename)
joiner_filename = params.exp_dir / "joiner_jit_trace.pt"
export_joiner_model_jit_trace(model.joiner, joiner_filename)
else:
logging.info("Not using torch.jit.script")
# Save it using a format so that it can be loaded
# by :func:`load_checkpoint`
filename = params.exp_dir / "pretrained.pt"
torch.save({"model": model.state_dict()}, str(filename))
logging.info(f"Saved to {filename}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()