icefall/egs/wenetspeech/ASR/local/text2segments.py
marcoyang1998 d337398d29
Shallow fusion for Aishell (#954)
* add shallow fusion and LODR for aishell

* update RESULTS

* add save by iterations
2023-04-03 16:20:29 +08:00

109 lines
2.9 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo)
# 2022 Xiaomi Corp. (authors: Weiji Zhuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input "text", which refers to the transcript file for
WenetSpeech:
- text
and generates the output file text_word_segmentation which is implemented
with word segmenting:
- text_words_segmentation
"""
import argparse
from multiprocessing import Pool
import jieba
import paddle
from tqdm import tqdm
# In PaddlePaddle 2.x, dynamic graph mode is turned on by default,
# and 'data()' is only supported in static graph mode. So if you
# want to use this api, should call 'paddle.enable_static()' before
# this api to enter static graph mode.
# paddle.enable_static()
# paddle.disable_signal_handler()
jieba.enable_paddle()
def get_parser():
parser = argparse.ArgumentParser(
description="Chinese Word Segmentation for text",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--num-process",
"-n",
default=20,
type=int,
help="the number of processes",
)
parser.add_argument(
"--input-file",
"-i",
default="data/lang_char/text",
type=str,
help="the input text file for WenetSpeech",
)
parser.add_argument(
"--output-file",
"-o",
default="data/lang_char/text_words_segmentation",
type=str,
help="the text implemented with words segmenting for WenetSpeech",
)
return parser
def cut(lines):
if lines is not None:
cut_lines = jieba.cut(lines, use_paddle=True)
return [i for i in cut_lines]
else:
return None
def main():
parser = get_parser()
args = parser.parse_args()
num_process = args.num_process
input_file = args.input_file
output_file = args.output_file
# parallel mode does not support use_paddle
# jieba.enable_parallel(num_process)
with open(input_file, "r", encoding="utf-8") as fr:
lines = fr.readlines()
with Pool(processes=num_process) as p:
new_lines = list(tqdm(p.imap(cut, lines), total=len(lines)))
with open(output_file, "w", encoding="utf-8") as fw:
for line in new_lines:
fw.write(" ".join(line) + "\n")
if __name__ == "__main__":
main()