mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* add whisper fbank for wenetspeech * add whisper fbank for other dataset * add str to bool * add decode for wenetspeech * add requirments.txt * add original model decode with 30s * test feature extractor speed * add aishell2 feat * change compute feature batch * fix overwrite * fix executor * regression * add kaldifeatwhisper fbank * fix io issue * parallel jobs * use multi machines * add wenetspeech fine-tune scripts * add monkey patch codes * remove useless file * fix subsampling factor * fix too long audios * add remove long short * fix whisper version to support multi batch beam * decode all wav files * remove utterance more than 30s in test_net * only test net * using soft links * add kespeech whisper feats * fix index error * add manifests for whisper * change to licomchunky writer * add missing option * decrease cpu usage * add speed perturb for kespeech * fix kespeech speed perturb * add dataset * load checkpoint from specific path * add speechio * add speechio results --------- Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
212 lines
6.1 KiB
Python
Executable File
212 lines
6.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
|
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import logging
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from lhotse import ( # KaldifeatWhisperFbank,; KaldifeatWhisperFbankConfig,
|
|
CutSet,
|
|
KaldifeatFbank,
|
|
KaldifeatFbankConfig,
|
|
LilcomChunkyWriter,
|
|
WhisperFbank,
|
|
WhisperFbankConfig,
|
|
set_audio_duration_mismatch_tolerance,
|
|
set_caching_enabled,
|
|
)
|
|
|
|
from icefall.utils import get_executor, str2bool
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
torch.multiprocessing.set_sharing_strategy("file_system")
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--training-subset",
|
|
type=str,
|
|
default="L",
|
|
help="The training subset for computing fbank feature.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-workers",
|
|
type=int,
|
|
default=20,
|
|
help="Number of dataloading workers used for reading the audio.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--batch-duration",
|
|
type=float,
|
|
default=600.0,
|
|
help="The maximum number of audio seconds in a batch."
|
|
"Determines batch size dynamically.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-splits",
|
|
type=int,
|
|
required=True,
|
|
help="The number of splits of the L subset",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start",
|
|
type=int,
|
|
default=0,
|
|
help="Process pieces starting from this number (included).",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--stop",
|
|
type=int,
|
|
default=-1,
|
|
help="Stop processing pieces until this number (excluded).",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-mel-bins",
|
|
type=int,
|
|
default=80,
|
|
help="""The number of mel bins for Fbank""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--whisper-fbank",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Use WhisperFbank instead of Fbank. Default: False.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--output-dir-prefix",
|
|
type=str,
|
|
default="",
|
|
help="Prefix of the output directory.",
|
|
)
|
|
return parser
|
|
|
|
|
|
def compute_fbank_wenetspeech_splits(args):
|
|
subset = args.training_subset
|
|
subset = str(subset)
|
|
num_splits = args.num_splits
|
|
output_dir = f"data/fbank/{subset}_split_{num_splits}"
|
|
output_dir = Path(output_dir)
|
|
output_dir = Path(args.output_dir_prefix) / output_dir
|
|
assert output_dir.exists(), f"{output_dir} does not exist!"
|
|
|
|
num_digits = len(str(num_splits))
|
|
|
|
start = args.start
|
|
stop = args.stop
|
|
if stop < start:
|
|
stop = num_splits
|
|
|
|
stop = min(stop, num_splits)
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
if args.whisper_fbank:
|
|
extractor = WhisperFbank(
|
|
WhisperFbankConfig(num_filters=args.num_mel_bins, device=device)
|
|
)
|
|
# extractor = KaldifeatWhisperFbank(KaldifeatWhisperFbankConfig(num_filters=args.num_mel_bins, device=device))
|
|
else:
|
|
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
|
logging.info(f"device: {device}")
|
|
|
|
set_audio_duration_mismatch_tolerance(0.01) # 10ms tolerance
|
|
set_caching_enabled(False)
|
|
# with get_executor() as ex: # Initialize the executor only once.
|
|
for i in range(start, stop):
|
|
idx = f"{i}".zfill(num_digits)
|
|
logging.info(f"Processing {i+1}/{num_splits}")
|
|
|
|
cuts_path = output_dir / f"cuts_{subset}.{idx}.jsonl.gz"
|
|
if cuts_path.is_file():
|
|
logging.info(f"{cuts_path} exists - skipping")
|
|
continue
|
|
|
|
raw_cuts_path = output_dir / f"cuts_{subset}_raw.{idx}.jsonl.gz"
|
|
|
|
logging.info(f"Loading {raw_cuts_path}")
|
|
cut_set = CutSet.from_file(raw_cuts_path)
|
|
|
|
logging.info("Splitting cuts into smaller chunks.")
|
|
cut_set = cut_set.trim_to_supervisions(
|
|
keep_overlapping=False, min_duration=None
|
|
)
|
|
|
|
logging.info("Computing features")
|
|
cut_set = cut_set.compute_and_store_features_batch(
|
|
extractor=extractor,
|
|
storage_path=f"{output_dir}/feats_{subset}_{idx}",
|
|
num_workers=args.num_workers,
|
|
batch_duration=args.batch_duration,
|
|
storage_type=LilcomChunkyWriter,
|
|
overwrite=True,
|
|
)
|
|
logging.info(f"Saving to {cuts_path}")
|
|
cut_set.to_file(cuts_path)
|
|
|
|
|
|
def main():
|
|
now = datetime.now()
|
|
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
|
|
|
|
log_filename = "log-compute_fbank_wenetspeech_splits"
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
log_filename = f"{log_filename}-{date_time}"
|
|
|
|
logging.basicConfig(
|
|
filename=log_filename,
|
|
format=formatter,
|
|
level=logging.INFO,
|
|
filemode="w",
|
|
)
|
|
|
|
console = logging.StreamHandler()
|
|
console.setLevel(logging.INFO)
|
|
console.setFormatter(logging.Formatter(formatter))
|
|
logging.getLogger("").addHandler(console)
|
|
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
logging.info(vars(args))
|
|
|
|
compute_fbank_wenetspeech_splits(args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|