icefall/egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_splits.py
Yuekai Zhang 5df24c1685
Whisper large fine-tuning on wenetspeech, mutli-hans-zh (#1483)
* add whisper fbank for wenetspeech

* add whisper fbank for other dataset

* add str to bool

* add decode for wenetspeech

* add requirments.txt

* add original model decode with 30s

* test feature extractor speed

* add aishell2 feat

* change compute feature batch

* fix overwrite

* fix executor

* regression

* add kaldifeatwhisper fbank

* fix io issue

* parallel jobs

* use multi machines

* add wenetspeech fine-tune scripts

* add monkey patch codes

* remove useless file

* fix subsampling factor

* fix too long audios

* add remove long short

* fix whisper version to support multi batch beam

* decode all wav files

* remove utterance more than 30s in test_net

* only test net

* using soft links

* add kespeech whisper feats

* fix index error

* add manifests for whisper

* change to licomchunky writer

* add missing option

* decrease cpu usage 

* add speed perturb for kespeech

* fix kespeech speed perturb

* add dataset

* load checkpoint from specific path

* add speechio

* add speechio results

---------

Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
2024-03-07 19:04:27 +08:00

212 lines
6.1 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from datetime import datetime
from pathlib import Path
import torch
from lhotse import ( # KaldifeatWhisperFbank,; KaldifeatWhisperFbankConfig,
CutSet,
KaldifeatFbank,
KaldifeatFbankConfig,
LilcomChunkyWriter,
WhisperFbank,
WhisperFbankConfig,
set_audio_duration_mismatch_tolerance,
set_caching_enabled,
)
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
torch.multiprocessing.set_sharing_strategy("file_system")
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--training-subset",
type=str,
default="L",
help="The training subset for computing fbank feature.",
)
parser.add_argument(
"--num-workers",
type=int,
default=20,
help="Number of dataloading workers used for reading the audio.",
)
parser.add_argument(
"--batch-duration",
type=float,
default=600.0,
help="The maximum number of audio seconds in a batch."
"Determines batch size dynamically.",
)
parser.add_argument(
"--num-splits",
type=int,
required=True,
help="The number of splits of the L subset",
)
parser.add_argument(
"--start",
type=int,
default=0,
help="Process pieces starting from this number (included).",
)
parser.add_argument(
"--stop",
type=int,
default=-1,
help="Stop processing pieces until this number (excluded).",
)
parser.add_argument(
"--num-mel-bins",
type=int,
default=80,
help="""The number of mel bins for Fbank""",
)
parser.add_argument(
"--whisper-fbank",
type=str2bool,
default=False,
help="Use WhisperFbank instead of Fbank. Default: False.",
)
parser.add_argument(
"--output-dir-prefix",
type=str,
default="",
help="Prefix of the output directory.",
)
return parser
def compute_fbank_wenetspeech_splits(args):
subset = args.training_subset
subset = str(subset)
num_splits = args.num_splits
output_dir = f"data/fbank/{subset}_split_{num_splits}"
output_dir = Path(output_dir)
output_dir = Path(args.output_dir_prefix) / output_dir
assert output_dir.exists(), f"{output_dir} does not exist!"
num_digits = len(str(num_splits))
start = args.start
stop = args.stop
if stop < start:
stop = num_splits
stop = min(stop, num_splits)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
if args.whisper_fbank:
extractor = WhisperFbank(
WhisperFbankConfig(num_filters=args.num_mel_bins, device=device)
)
# extractor = KaldifeatWhisperFbank(KaldifeatWhisperFbankConfig(num_filters=args.num_mel_bins, device=device))
else:
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
logging.info(f"device: {device}")
set_audio_duration_mismatch_tolerance(0.01) # 10ms tolerance
set_caching_enabled(False)
# with get_executor() as ex: # Initialize the executor only once.
for i in range(start, stop):
idx = f"{i}".zfill(num_digits)
logging.info(f"Processing {i+1}/{num_splits}")
cuts_path = output_dir / f"cuts_{subset}.{idx}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
continue
raw_cuts_path = output_dir / f"cuts_{subset}_raw.{idx}.jsonl.gz"
logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)
logging.info("Splitting cuts into smaller chunks.")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)
logging.info("Computing features")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/feats_{subset}_{idx}",
num_workers=args.num_workers,
batch_duration=args.batch_duration,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)
def main():
now = datetime.now()
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
log_filename = "log-compute_fbank_wenetspeech_splits"
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
log_filename = f"{log_filename}-{date_time}"
logging.basicConfig(
filename=log_filename,
format=formatter,
level=logging.INFO,
filemode="w",
)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(logging.Formatter(formatter))
logging.getLogger("").addHandler(console)
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
compute_fbank_wenetspeech_splits(args)
if __name__ == "__main__":
main()