mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* add the `voxpopuli` recipe - this is the data preparation - there is no ASR training and no results * update the PR#1374 (feedback from @csukuangfj) - fixing .py headers and docstrings - removing BUT specific parts of `prepare.sh` - adding assert `num_jobs >= num_workers` to `compute_fbank.py` - narrowing list of languages (let's limit to ASR sets with transcripts for now) - added links to `README.md` - extending `text_from_manifest.py`
179 lines
5.1 KiB
Python
Executable File
179 lines
5.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2023 Xiaomi Corp. (authors: Yifan Yang)
|
|
# 2023 Brno University of Technology (author: Karel Veselý)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
Preprocess the database.
|
|
- Convert RecordingSet and SupervisionSet to CutSet.
|
|
- Apply text normalization to the transcripts.
|
|
- We take renormalized `orig_text` as `text` transcripts.
|
|
- The text normalization is separating punctuation from words.
|
|
- Also we put capital letter to the beginning of a sentence.
|
|
|
|
The script is inspired in:
|
|
`egs/commonvoice/ASR/local/preprocess_commonvoice.py`
|
|
|
|
Usage example:
|
|
python3 ./local/preprocess_voxpopuli.py \
|
|
--task asr --lang en
|
|
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
from lhotse import CutSet
|
|
from lhotse.recipes.utils import read_manifests_if_cached
|
|
|
|
# from local/
|
|
from separate_punctuation import separate_punctuation
|
|
from uppercase_begin_of_sentence import UpperCaseBeginOfSentence
|
|
|
|
from icefall.utils import str2bool
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--dataset",
|
|
type=str,
|
|
help="""Dataset parts to compute fbank. If None, we will use all""",
|
|
default=None,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--task",
|
|
type=str,
|
|
help="""Task of VoxPopuli""",
|
|
default="asr",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lang",
|
|
type=str,
|
|
help="""Language of VoxPopuli""",
|
|
required=True,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-original-text",
|
|
type=str2bool,
|
|
help="""Use 'original_text' from the annoattaion file,
|
|
otherwise 'normed_text' will be used
|
|
(see `data/manifests/${task}_${lang}.tsv.gz`).
|
|
""",
|
|
default=False,
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def normalize_text(utt: str) -> str:
|
|
utt = UpperCaseBeginOfSentence().process_line_text(separate_punctuation(utt))
|
|
return utt
|
|
|
|
|
|
def preprocess_voxpopuli(
|
|
task: str,
|
|
language: str,
|
|
dataset: Optional[str] = None,
|
|
use_original_text: bool = False,
|
|
):
|
|
src_dir = Path("data/manifests")
|
|
output_dir = Path("data/fbank")
|
|
output_dir.mkdir(exist_ok=True)
|
|
|
|
if dataset is None:
|
|
dataset_parts = (
|
|
"dev",
|
|
"test",
|
|
"train",
|
|
)
|
|
else:
|
|
dataset_parts = dataset.split(" ", -1)
|
|
|
|
logging.info("Loading manifest")
|
|
prefix = f"voxpopuli-{task}-{language}"
|
|
suffix = "jsonl.gz"
|
|
manifests = read_manifests_if_cached(
|
|
dataset_parts=dataset_parts,
|
|
output_dir=src_dir,
|
|
suffix=suffix,
|
|
prefix=prefix,
|
|
)
|
|
assert manifests is not None
|
|
|
|
assert len(manifests) == len(dataset_parts), (
|
|
len(manifests),
|
|
len(dataset_parts),
|
|
list(manifests.keys()),
|
|
dataset_parts,
|
|
)
|
|
|
|
for partition, m in manifests.items():
|
|
logging.info(f"Processing {partition}")
|
|
raw_cuts_path = output_dir / f"{prefix}_cuts_{partition}_raw.{suffix}"
|
|
if raw_cuts_path.is_file():
|
|
logging.info(f"{partition} already exists - skipping")
|
|
continue
|
|
|
|
if use_original_text:
|
|
logging.info("Using 'original_text' from the annotation file.")
|
|
logging.info(f"Normalizing text in {partition}")
|
|
for sup in m["supervisions"]:
|
|
# `orig_text` includes punctuation and true-case
|
|
orig_text = str(sup.custom["orig_text"])
|
|
# we replace `text` by normalized `orig_text`
|
|
sup.text = normalize_text(orig_text)
|
|
else:
|
|
logging.info("Using 'normed_text' from the annotation file.")
|
|
|
|
# remove supervisions with empty 'text'
|
|
m["supervisions"] = m["supervisions"].filter(lambda sup: len(sup.text) > 0)
|
|
|
|
# Create cut manifest with long-recordings.
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=m["recordings"],
|
|
supervisions=m["supervisions"],
|
|
).resample(16000)
|
|
|
|
# Store the cut set incl. the resampling.
|
|
logging.info(f"Saving to {raw_cuts_path}")
|
|
cut_set.to_file(raw_cuts_path)
|
|
|
|
|
|
def main():
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
args = get_args()
|
|
logging.info(vars(args))
|
|
preprocess_voxpopuli(
|
|
task=args.task,
|
|
language=args.lang,
|
|
dataset=args.dataset,
|
|
use_original_text=args.use_original_text,
|
|
)
|
|
logging.info("Done")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|