icefall/egs/voxpopuli/ASR/local/preprocess_voxpopuli.py
Karel Vesely 59c943878f
add the voxpopuli recipe (#1374)
* add the `voxpopuli` recipe

- this is the data preparation
- there is no ASR training and no results

* update the PR#1374 (feedback from @csukuangfj)

- fixing .py headers and docstrings
- removing BUT specific parts of `prepare.sh`
- adding assert `num_jobs >= num_workers` to `compute_fbank.py`
- narrowing list of languages
  (let's limit to ASR sets with transcripts for now)
- added links to `README.md`
- extending `text_from_manifest.py`
2023-11-16 14:38:31 +08:00

179 lines
5.1 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Yifan Yang)
# 2023 Brno University of Technology (author: Karel Veselý)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocess the database.
- Convert RecordingSet and SupervisionSet to CutSet.
- Apply text normalization to the transcripts.
- We take renormalized `orig_text` as `text` transcripts.
- The text normalization is separating punctuation from words.
- Also we put capital letter to the beginning of a sentence.
The script is inspired in:
`egs/commonvoice/ASR/local/preprocess_commonvoice.py`
Usage example:
python3 ./local/preprocess_voxpopuli.py \
--task asr --lang en
"""
import argparse
import logging
from pathlib import Path
from typing import Optional
from lhotse import CutSet
from lhotse.recipes.utils import read_manifests_if_cached
# from local/
from separate_punctuation import separate_punctuation
from uppercase_begin_of_sentence import UpperCaseBeginOfSentence
from icefall.utils import str2bool
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset",
type=str,
help="""Dataset parts to compute fbank. If None, we will use all""",
default=None,
)
parser.add_argument(
"--task",
type=str,
help="""Task of VoxPopuli""",
default="asr",
)
parser.add_argument(
"--lang",
type=str,
help="""Language of VoxPopuli""",
required=True,
)
parser.add_argument(
"--use-original-text",
type=str2bool,
help="""Use 'original_text' from the annoattaion file,
otherwise 'normed_text' will be used
(see `data/manifests/${task}_${lang}.tsv.gz`).
""",
default=False,
)
return parser.parse_args()
def normalize_text(utt: str) -> str:
utt = UpperCaseBeginOfSentence().process_line_text(separate_punctuation(utt))
return utt
def preprocess_voxpopuli(
task: str,
language: str,
dataset: Optional[str] = None,
use_original_text: bool = False,
):
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
output_dir.mkdir(exist_ok=True)
if dataset is None:
dataset_parts = (
"dev",
"test",
"train",
)
else:
dataset_parts = dataset.split(" ", -1)
logging.info("Loading manifest")
prefix = f"voxpopuli-{task}-{language}"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
suffix=suffix,
prefix=prefix,
)
assert manifests is not None
assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)
for partition, m in manifests.items():
logging.info(f"Processing {partition}")
raw_cuts_path = output_dir / f"{prefix}_cuts_{partition}_raw.{suffix}"
if raw_cuts_path.is_file():
logging.info(f"{partition} already exists - skipping")
continue
if use_original_text:
logging.info("Using 'original_text' from the annotation file.")
logging.info(f"Normalizing text in {partition}")
for sup in m["supervisions"]:
# `orig_text` includes punctuation and true-case
orig_text = str(sup.custom["orig_text"])
# we replace `text` by normalized `orig_text`
sup.text = normalize_text(orig_text)
else:
logging.info("Using 'normed_text' from the annotation file.")
# remove supervisions with empty 'text'
m["supervisions"] = m["supervisions"].filter(lambda sup: len(sup.text) > 0)
# Create cut manifest with long-recordings.
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
).resample(16000)
# Store the cut set incl. the resampling.
logging.info(f"Saving to {raw_cuts_path}")
cut_set.to_file(raw_cuts_path)
def main():
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
preprocess_voxpopuli(
task=args.task,
language=args.lang,
dataset=args.dataset,
use_original_text=args.use_original_text,
)
logging.info("Done")
if __name__ == "__main__":
main()