mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* add the `voxpopuli` recipe - this is the data preparation - there is no ASR training and no results * update the PR#1374 (feedback from @csukuangfj) - fixing .py headers and docstrings - removing BUT specific parts of `prepare.sh` - adding assert `num_jobs >= num_workers` to `compute_fbank.py` - narrowing list of languages (let's limit to ASR sets with transcripts for now) - added links to `README.md` - extending `text_from_manifest.py`
249 lines
7.7 KiB
Python
Executable File
249 lines
7.7 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
# 2023 Brno University of Technology (authors: Karel Veselý)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
"""
|
|
This file computes fbank features of VoxPopuli dataset.
|
|
|
|
Usage example:
|
|
|
|
python3 ./local/compute_fbank.py \
|
|
--src-dir data/fbank --output-dir data/fbank \
|
|
--num-jobs 100 --num-workers 25 \
|
|
--prefix "voxpopuli-${task}-${lang}" \
|
|
--dataset train \
|
|
--trim-to-supervisions True \
|
|
--speed-perturb True
|
|
|
|
It looks for raw CutSet in the directory data/fbank
|
|
located at: `{src_dir}/{prefix}_cuts_{dataset}_raw.jsonl.gz`.
|
|
|
|
The generated fbank features are saved in `data/fbank/{prefix}-{dataset}_feats`
|
|
and CutSet manifest stored in `data/fbank/{prefix}_cuts_{dataset}.jsonl.gz`.
|
|
|
|
Typically, the number of workers is smaller than number of jobs
|
|
(see --num-jobs 100 --num-workers 25 in the example).
|
|
And, the number of jobs should be at least the number of workers (it's checked).
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import multiprocessing
|
|
import os
|
|
from concurrent.futures import ProcessPoolExecutor
|
|
from pathlib import Path
|
|
|
|
import sentencepiece as spm
|
|
import torch
|
|
from filter_cuts import filter_cuts
|
|
from lhotse import (
|
|
CutSet,
|
|
Fbank,
|
|
FbankConfig,
|
|
LilcomChunkyWriter,
|
|
is_caching_enabled,
|
|
set_caching_enabled,
|
|
)
|
|
|
|
from icefall.utils import str2bool
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
help="""Path to the bpe.model. If not None, we will remove short and
|
|
long utterances before extracting features""",
|
|
)
|
|
parser.add_argument(
|
|
"--src-dir",
|
|
type=str,
|
|
help="""Folder with the input manifest files.""",
|
|
default="data/manifests",
|
|
)
|
|
parser.add_argument(
|
|
"--output-dir",
|
|
type=str,
|
|
help="""Folder with the output manifests (cuts) and feature files.""",
|
|
default="data/fbank",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--prefix",
|
|
type=str,
|
|
help="""Prefix of the manifest files.""",
|
|
default="",
|
|
)
|
|
parser.add_argument(
|
|
"--dataset",
|
|
type=str,
|
|
help="""Dataset parts to compute fbank (train,test,dev).""",
|
|
default=None,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-jobs",
|
|
type=int,
|
|
help="""Number of jobs (i.e. files with extracted features)""",
|
|
default=50,
|
|
)
|
|
parser.add_argument(
|
|
"--num-workers",
|
|
type=int,
|
|
help="""Number of parallel workers""",
|
|
default=10,
|
|
)
|
|
parser.add_argument(
|
|
"--speed-perturb",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""Enable speed perturbation for the set.""",
|
|
)
|
|
parser.add_argument(
|
|
"--trim-to-supervisions",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""Apply `trim-to-supervision` to cut set.""",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def compute_fbank_features(args: argparse.Namespace):
|
|
set_caching_enabled(True) # lhotse
|
|
|
|
src_dir = Path(args.src_dir)
|
|
output_dir = Path(args.output_dir)
|
|
num_jobs = args.num_jobs
|
|
num_workers = min(args.num_workers, os.cpu_count())
|
|
num_mel_bins = 80
|
|
|
|
bpe_model = args.bpe_model
|
|
if bpe_model:
|
|
logging.info(f"Loading {bpe_model}")
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(bpe_model)
|
|
|
|
prefix = args.prefix # "ELEF_TRAIN"
|
|
dataset = args.dataset
|
|
suffix = "jsonl.gz"
|
|
|
|
cuts_raw_filename = Path(f"{src_dir}/{prefix}_cuts_{dataset}_raw.{suffix}")
|
|
cuts_raw = CutSet.from_file(cuts_raw_filename)
|
|
|
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
|
|
|
cuts_filename = Path(f"{prefix}_cuts_{dataset}.{suffix}")
|
|
if (output_dir / cuts_filename).is_file():
|
|
logging.info(f"{output_dir/cuts_filename} already exists - skipping.")
|
|
return
|
|
|
|
logging.info(f"Processing {output_dir/cuts_filename}")
|
|
cut_set = cuts_raw
|
|
|
|
if bpe_model:
|
|
cut_set = filter_cuts(cut_set, sp)
|
|
|
|
if args.speed_perturb:
|
|
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
|
|
|
if args.trim_to_supervisions:
|
|
logging.info(f"About to `trim_to_supervisions()` {output_dir / cuts_filename}")
|
|
cut_set = cut_set.trim_to_supervisions(keep_overlapping=False)
|
|
else:
|
|
logging.info(
|
|
"Not doing `trim_to_supervisions()`, "
|
|
"to enable use --trim-to-supervision=True"
|
|
)
|
|
|
|
cut_set = cut_set.to_eager() # disallow lazy evaluation (sorting requires it)
|
|
cut_set = cut_set.sort_by_recording_id() # enhances AudioCache hit rate
|
|
|
|
# We typically use `num_jobs=100, num_workers=20`
|
|
# - this is helpful for large databases
|
|
# - both values are configurable externally
|
|
assert num_jobs >= num_workers, (num_jobs, num_workers)
|
|
executor = ProcessPoolExecutor(
|
|
max_workers=num_workers,
|
|
mp_context=multiprocessing.get_context("spawn"),
|
|
initializer=set_caching_enabled,
|
|
initargs=(is_caching_enabled(),),
|
|
)
|
|
|
|
logging.info(
|
|
f"executor {executor} : num_workers {num_workers}, num_jobs {num_jobs}"
|
|
)
|
|
|
|
cut_set = cut_set.compute_and_store_features(
|
|
extractor=extractor,
|
|
storage_path=f"{output_dir / prefix}-{dataset}_feats",
|
|
num_jobs=num_jobs,
|
|
executor=executor,
|
|
storage_type=LilcomChunkyWriter,
|
|
)
|
|
|
|
# correct small deviations of duration, caused by speed-perturbation
|
|
for cut in cut_set:
|
|
assert len(cut.supervisions) == 1, (len(cut.supervisions), cut.id)
|
|
duration_difference = abs(cut.supervisions[0].duration - cut.duration)
|
|
tolerance = 0.02 # 20ms
|
|
if duration_difference == 0.0:
|
|
pass
|
|
elif duration_difference <= tolerance:
|
|
logging.info(
|
|
"small mismatch of the supervision duration "
|
|
f"(Δt = {duration_difference*1000}ms), "
|
|
f"correcting : cut.duration {cut.duration} -> "
|
|
f"supervision {cut.supervisions[0].duration}"
|
|
)
|
|
cut.supervisions[0].duration = cut.duration
|
|
else:
|
|
logging.error(
|
|
"mismatch of cut/supervision duration "
|
|
f"(Δt = {duration_difference*1000}ms) : "
|
|
f"cut.duration {cut.duration}, "
|
|
f"supervision {cut.supervisions[0].duration}"
|
|
)
|
|
raise ValueError(
|
|
"mismatch of cut/supervision duration "
|
|
f"(Δt = {duration_difference*1000}ms)"
|
|
)
|
|
|
|
# store the cutset
|
|
logging.info(f"storing CutSet to : `{output_dir / cuts_filename}`")
|
|
cut_set.to_file(output_dir / cuts_filename)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
args = get_args()
|
|
logging.info(vars(args))
|
|
|
|
compute_fbank_features(args)
|