mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
478 lines
15 KiB
Python
478 lines
15 KiB
Python
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
|
# Mingshuang Luo)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
|
|
|
|
class TdnnLiGRU(nn.Module):
|
|
def __init__(
|
|
self, num_features: int, num_classes: int, subsampling_factor: int = 3
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
num_features:
|
|
The input dimension of the model.
|
|
num_classes:
|
|
The output dimension of the model.
|
|
subsampling_factor:
|
|
It reduces the number of output frames by this factor.
|
|
"""
|
|
super().__init__()
|
|
|
|
self.num_features = num_features
|
|
self.num_classes = num_classes
|
|
self.subsampling_factor = subsampling_factor
|
|
self.tdnn = nn.Sequential(
|
|
nn.Conv1d(
|
|
in_channels=num_features,
|
|
out_channels=512,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
),
|
|
nn.ReLU(inplace=True),
|
|
nn.BatchNorm1d(num_features=512, affine=False),
|
|
nn.Conv1d(
|
|
in_channels=512,
|
|
out_channels=512,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
),
|
|
nn.ReLU(inplace=True),
|
|
nn.BatchNorm1d(num_features=512, affine=False),
|
|
nn.Conv1d(
|
|
in_channels=512,
|
|
out_channels=512,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
),
|
|
nn.ReLU(inplace=True),
|
|
nn.BatchNorm1d(num_features=512, affine=False),
|
|
nn.Conv1d(
|
|
in_channels=512,
|
|
out_channels=512,
|
|
kernel_size=3,
|
|
stride=self.subsampling_factor, # stride: subsampling_factor!
|
|
padding=1,
|
|
),
|
|
nn.ReLU(inplace=True),
|
|
nn.BatchNorm1d(num_features=512, affine=False),
|
|
)
|
|
self.ligrus = nn.ModuleList(
|
|
[
|
|
LiGRU(
|
|
input_shape=[None, None, 512],
|
|
hidden_size=512,
|
|
num_layers=1,
|
|
bidirectional=True,
|
|
)
|
|
for _ in range(4)
|
|
]
|
|
)
|
|
self.linears = nn.ModuleList(
|
|
[nn.Linear(in_features=1024, out_features=512) for _ in range(4)]
|
|
)
|
|
self.bnorms = nn.ModuleList(
|
|
[nn.BatchNorm1d(num_features=512, affine=False) for _ in range(4)]
|
|
)
|
|
self.dropout = nn.Dropout(0.2)
|
|
self.linear = nn.Linear(in_features=512, out_features=self.num_classes)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
x:
|
|
Its shape is [N, C, T]
|
|
|
|
Returns:
|
|
The output tensor has shape [N, T, C]
|
|
"""
|
|
x = self.tdnn(x)
|
|
x = x.permute(0, 2, 1)
|
|
for ligru, linear, bnorm in zip(self.ligrus, self.linears, self.bnorms):
|
|
x_new, _ = ligru(x)
|
|
x_new = linear(x_new)
|
|
x_new = bnorm(x_new.permute(0, 2, 1)).permute(0, 2, 1)
|
|
# (N, T, C) -> (N, C, T) -> (N, T, C)
|
|
x_new = self.dropout(x_new)
|
|
x = x_new + x # skip connections
|
|
|
|
x = self.linear(x)
|
|
x = nn.functional.log_softmax(x, dim=-1)
|
|
return x
|
|
|
|
|
|
class LiGRU(torch.nn.Module):
|
|
"""This function implements a Light GRU (liGRU).
|
|
This LiGRU model is from speechbrain, please see
|
|
https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/nnet/RNN.py
|
|
|
|
LiGRU is single-gate GRU model based on batch-norm + relu
|
|
activations + recurrent dropout. For more info see:
|
|
|
|
"M. Ravanelli, P. Brakel, M. Omologo, Y. Bengio,
|
|
Light Gated Recurrent Units for Speech Recognition,
|
|
in IEEE Transactions on Emerging Topics in Computational Intelligence,
|
|
2018" (https://arxiv.org/abs/1803.10225)
|
|
|
|
This is a custm RNN and to speed it up it must be compiled with
|
|
the torch just-in-time compiler (jit) right before using it.
|
|
You can compile it with:
|
|
compiled_model = torch.jit.script(model)
|
|
|
|
It accepts in input tensors formatted as (batch, time, fea).
|
|
In the case of 4d inputs like (batch, time, fea, channel) the tensor is
|
|
flattened as (batch, time, fea*channel).
|
|
|
|
Arguments
|
|
---------
|
|
hidden_size : int
|
|
Number of output neurons (i.e, the dimensionality of the output).
|
|
values (i.e, time and frequency kernel sizes respectively).
|
|
input_shape : tuple
|
|
The shape of an example input.
|
|
nonlinearity : str
|
|
Type of nonlinearity (tanh, relu).
|
|
normalization : str
|
|
Type of normalization for the ligru model (batchnorm, layernorm).
|
|
Every string different from batchnorm and layernorm will result
|
|
in no normalization.
|
|
num_layers : int
|
|
Number of layers to employ in the RNN architecture.
|
|
bias : bool
|
|
If True, the additive bias b is adopted.
|
|
dropout : float
|
|
It is the dropout factor (must be between 0 and 1).
|
|
bidirectional : bool
|
|
If True, a bidirectional model that scans the sequence both
|
|
right-to-left and left-to-right is used.
|
|
|
|
Example
|
|
-------
|
|
>>> inp_tensor = torch.rand([4, 10, 20])
|
|
>>> net = LiGRU(input_shape=inp_tensor.shape, hidden_size=5)
|
|
>>> out_tensor, _ = net(inp_tensor)
|
|
>>>
|
|
torch.Size([4, 10, 5])
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size,
|
|
input_shape,
|
|
nonlinearity="relu",
|
|
normalization="batchnorm",
|
|
num_layers=1,
|
|
bias=True,
|
|
dropout=0.0,
|
|
bidirectional=False,
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
self.nonlinearity = nonlinearity
|
|
self.num_layers = num_layers
|
|
self.normalization = normalization
|
|
self.bias = bias
|
|
self.dropout = dropout
|
|
self.bidirectional = bidirectional
|
|
self.reshape = False
|
|
|
|
# Computing the feature dimensionality
|
|
if len(input_shape) > 3:
|
|
self.reshape = True
|
|
self.fea_dim = float(torch.prod(torch.tensor(input_shape[2:])))
|
|
self.batch_size = input_shape[0]
|
|
self.rnn = self._init_layers()
|
|
|
|
def _init_layers(self):
|
|
"""Initializes the layers of the liGRU."""
|
|
rnn = torch.nn.ModuleList([])
|
|
current_dim = self.fea_dim
|
|
|
|
for i in range(self.num_layers):
|
|
rnn_lay = LiGRU_Layer(
|
|
current_dim,
|
|
self.hidden_size,
|
|
self.num_layers,
|
|
self.batch_size,
|
|
dropout=self.dropout,
|
|
nonlinearity=self.nonlinearity,
|
|
normalization=self.normalization,
|
|
bidirectional=self.bidirectional,
|
|
)
|
|
rnn.append(rnn_lay)
|
|
|
|
if self.bidirectional:
|
|
current_dim = self.hidden_size * 2
|
|
else:
|
|
current_dim = self.hidden_size
|
|
return rnn
|
|
|
|
def forward(self, x, hx: Optional[Tensor] = None):
|
|
"""Returns the output of the liGRU.
|
|
|
|
Arguments
|
|
---------
|
|
x : torch.Tensor
|
|
The input tensor.
|
|
hx : torch.Tensor
|
|
Starting hidden state.
|
|
"""
|
|
# Reshaping input tensors for 4d inputs
|
|
if self.reshape:
|
|
if x.ndim == 4:
|
|
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3])
|
|
|
|
# run ligru
|
|
output, hh = self._forward_ligru(x, hx=hx)
|
|
|
|
return output, hh
|
|
|
|
def _forward_ligru(self, x, hx: Optional[Tensor]):
|
|
"""Returns the output of the vanilla liGRU.
|
|
|
|
Arguments
|
|
---------
|
|
x : torch.Tensor
|
|
Input tensor.
|
|
hx : torch.Tensor
|
|
"""
|
|
h = []
|
|
if hx is not None:
|
|
if self.bidirectional:
|
|
hx = hx.reshape(self.num_layers, self.batch_size * 2, self.hidden_size)
|
|
# Processing the different layers
|
|
for i, ligru_lay in enumerate(self.rnn):
|
|
if hx is not None:
|
|
x = ligru_lay(x, hx=hx[i])
|
|
else:
|
|
x = ligru_lay(x, hx=None)
|
|
h.append(x[:, -1, :])
|
|
h = torch.stack(h, dim=1)
|
|
|
|
if self.bidirectional:
|
|
h = h.reshape(h.shape[1] * 2, h.shape[0], self.hidden_size)
|
|
else:
|
|
h = h.transpose(0, 1)
|
|
|
|
return x, h
|
|
|
|
|
|
class LiGRU_Layer(torch.nn.Module):
|
|
"""This function implements Light-Gated Recurrent Units (ligru) layer.
|
|
|
|
Arguments
|
|
---------
|
|
input_size : int
|
|
Feature dimensionality of the input tensors.
|
|
batch_size : int
|
|
Batch size of the input tensors.
|
|
hidden_size : int
|
|
Number of output neurons.
|
|
num_layers : int
|
|
Number of layers to employ in the RNN architecture.
|
|
nonlinearity : str
|
|
Type of nonlinearity (tanh, relu).
|
|
normalization : str
|
|
Type of normalization (batchnorm, layernorm).
|
|
Every string different from batchnorm and layernorm will result
|
|
in no normalization.
|
|
dropout : float
|
|
It is the dropout factor (must be between 0 and 1).
|
|
bidirectional : bool
|
|
if True, a bidirectional model that scans the sequence both
|
|
right-to-left and left-to-right is used.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_size,
|
|
hidden_size,
|
|
num_layers,
|
|
batch_size,
|
|
dropout=0.0,
|
|
nonlinearity="relu",
|
|
normalization="batchnorm",
|
|
bidirectional=False,
|
|
):
|
|
|
|
super(LiGRU_Layer, self).__init__()
|
|
self.hidden_size = int(hidden_size)
|
|
self.input_size = int(input_size)
|
|
self.batch_size = batch_size
|
|
self.bidirectional = bidirectional
|
|
self.dropout = dropout
|
|
self.drop = torch.nn.Dropout(p=self.dropout, inplace=False)
|
|
self.N_drop_masks = 16000
|
|
self.drop_mask_cnt = 0
|
|
self.drop_mask_te = torch.tensor([1.0]).float()
|
|
self.w = nn.Linear(self.input_size, 2 * self.hidden_size, bias=False)
|
|
self.u = nn.Linear(self.hidden_size, 2 * self.hidden_size, bias=False)
|
|
|
|
# Initializing batch norm
|
|
self.normalize = False
|
|
|
|
if normalization == "batchnorm":
|
|
self.norm = nn.BatchNorm1d(2 * self.hidden_size, momentum=0.05)
|
|
self.normalize = True
|
|
|
|
elif normalization == "layernorm":
|
|
self.norm = torch.nn.LayerNorm(2 * self.hidden_size)
|
|
self.normalize = True
|
|
else:
|
|
# Normalization is disabled here. self.norm is only formally
|
|
# initialized to avoid jit issues.
|
|
self.norm = torch.nn.LayerNorm(2 * self.hidden_size)
|
|
self.normalize = True
|
|
|
|
# Initial state
|
|
self.register_buffer("h_init", torch.zeros(1, self.hidden_size))
|
|
|
|
# Setting the activation function
|
|
if nonlinearity == "tanh":
|
|
self.act = torch.nn.Tanh()
|
|
elif nonlinearity == "sin":
|
|
self.act = torch.sin
|
|
elif nonlinearity == "leaky_relu":
|
|
self.act = torch.nn.LeakyReLU()
|
|
else:
|
|
self.act = torch.nn.ReLU()
|
|
|
|
def forward(self, x, hx: Optional[Tensor] = None):
|
|
# type: (Tensor, Optional[Tensor]) -> Tensor # noqa F821
|
|
"""Returns the output of the liGRU layer.
|
|
|
|
Arguments
|
|
---------
|
|
x : torch.Tensor
|
|
Input tensor.
|
|
"""
|
|
if self.bidirectional:
|
|
x_flip = x.flip(1)
|
|
x = torch.cat([x, x_flip], dim=0)
|
|
|
|
# Change batch size if needed
|
|
self._change_batch_size(x)
|
|
|
|
# Feed-forward affine transformations (all steps in parallel)
|
|
w = self.w(x)
|
|
|
|
# Apply batch normalization
|
|
if self.normalize:
|
|
w_bn = self.norm(w.reshape(w.shape[0] * w.shape[1], w.shape[2]))
|
|
w = w_bn.reshape(w.shape[0], w.shape[1], w.shape[2])
|
|
|
|
# Processing time steps
|
|
if hx is not None:
|
|
h = self._ligru_cell(w, hx)
|
|
else:
|
|
h = self._ligru_cell(w, self.h_init)
|
|
|
|
if self.bidirectional:
|
|
h_f, h_b = h.chunk(2, dim=0)
|
|
h_b = h_b.flip(1)
|
|
h = torch.cat([h_f, h_b], dim=2)
|
|
|
|
return h
|
|
|
|
def _ligru_cell(self, w, ht):
|
|
"""Returns the hidden states for each time step.
|
|
|
|
Arguments
|
|
---------
|
|
wx : torch.Tensor
|
|
Linearly transformed input.
|
|
"""
|
|
hiddens = []
|
|
|
|
# Sampling dropout mask
|
|
drop_mask = self._sample_drop_mask(w)
|
|
|
|
# Loop over time axis
|
|
for k in range(w.shape[1]):
|
|
gates = w[:, k] + self.u(ht)
|
|
at, zt = gates.chunk(2, 1)
|
|
zt = torch.sigmoid(zt)
|
|
hcand = self.act(at) * drop_mask
|
|
ht = zt * ht + (1 - zt) * hcand
|
|
hiddens.append(ht)
|
|
|
|
# Stacking hidden states
|
|
h = torch.stack(hiddens, dim=1)
|
|
return h
|
|
|
|
def _init_drop(self, batch_size):
|
|
"""Initializes the recurrent dropout operation. To speed it up,
|
|
the dropout masks are sampled in advance.
|
|
"""
|
|
self.N_drop_masks = 16000
|
|
self.drop_mask_cnt = 0
|
|
|
|
self.register_buffer(
|
|
"drop_masks",
|
|
self.drop(torch.ones(self.N_drop_masks, self.hidden_size)).data,
|
|
)
|
|
self.register_buffer("drop_mask_te", torch.tensor([1.0]).float())
|
|
|
|
def _sample_drop_mask(self, w):
|
|
"""Selects one of the pre-defined dropout masks"""
|
|
if self.training:
|
|
|
|
# Sample new masks when needed
|
|
if self.drop_mask_cnt + self.batch_size > self.N_drop_masks:
|
|
self.drop_mask_cnt = 0
|
|
self.drop_masks = self.drop(
|
|
torch.ones(self.N_drop_masks, self.hidden_size, device=w.device)
|
|
).data
|
|
|
|
# Sampling the mask
|
|
left_boundary = self.drop_mask_cnt
|
|
right_boundary = self.drop_mask_cnt + self.batch_size
|
|
drop_mask = self.drop_masks[left_boundary:right_boundary]
|
|
self.drop_mask_cnt = self.drop_mask_cnt + self.batch_size
|
|
|
|
else:
|
|
self.drop_mask_te = self.drop_mask_te.to(w.device)
|
|
drop_mask = self.drop_mask_te
|
|
|
|
return drop_mask
|
|
|
|
def _change_batch_size(self, x):
|
|
"""This function changes the batch size when it is different from
|
|
the one detected in the initialization method. This might happen in
|
|
the case of multi-gpu or when we have different batch sizes in train
|
|
and test. We also update the h_int and drop masks.
|
|
"""
|
|
if self.batch_size != x.shape[0]:
|
|
self.batch_size = x.shape[0]
|
|
|
|
if self.training:
|
|
self.drop_masks = self.drop(
|
|
torch.ones(
|
|
self.N_drop_masks,
|
|
self.hidden_size,
|
|
device=x.device,
|
|
)
|
|
).data
|