mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
213 lines
5.8 KiB
Bash
Executable File
213 lines
5.8 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|
|
|
set -eou pipefail
|
|
|
|
stage=0
|
|
stop_stage=100
|
|
|
|
# We assume dl_dir (download dir) contains the following
|
|
# directories and files. If not, they will be downloaded
|
|
# by this script automatically.
|
|
#
|
|
# - $dl_dir/tedlium3
|
|
# You can find data, doc, legacy, LM, etc, inside it.
|
|
# You can download them from https://www.openslr.org/51
|
|
#
|
|
# - $dl_dir/musan
|
|
# This directory contains the following directories downloaded from
|
|
# http://www.openslr.org/17/
|
|
#
|
|
# - music
|
|
# - noise
|
|
# - speech
|
|
dl_dir=$PWD/download
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# vocab size for sentence piece models.
|
|
# It will generate data/lang_bpe_xxx,
|
|
# data/lang_bpe_yyy if the array contains xxx, yyy
|
|
vocab_sizes=(
|
|
5000
|
|
2000
|
|
1000
|
|
500
|
|
)
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "Stage 0: Download data"
|
|
|
|
# If you have pre-downloaded it to /path/to/tedlium3,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/tedlium3 $dl_dir/tedlium3
|
|
#
|
|
if [ ! -d $dl_dir/tedlium3 ]; then
|
|
lhotse download tedlium $dl_dir
|
|
mv $dl_dir/TEDLIUM_release-3 $dl_dir/tedlium3
|
|
fi
|
|
|
|
# Download big and small 4 gram lanuage models
|
|
if [ ! -d $dl_dir/lm ]; then
|
|
wget --continue http://kaldi-asr.org/models/5/4gram_small.arpa.gz -P $dl_dir/lm
|
|
wget --continue http://kaldi-asr.org/models/5/4gram_big.arpa.gz -P $dl_dir/lm
|
|
gzip -d $dl_dir/lm/4gram_small.arpa.gz $dl_dir/lm/4gram_big.arpa.gz
|
|
fi
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
#ln -sfv /path/to/musan $dl_dir/musan
|
|
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare tedlium3 manifests"
|
|
if [ ! -f data/manifests/.tedlium3.done ]; then
|
|
# We assume that you have downloaded the tedlium3 corpus
|
|
# to $dl_dir/tedlium3
|
|
mkdir -p data/manifests
|
|
lhotse prepare tedlium $dl_dir/tedlium3 data/manifests
|
|
touch data/manifests/.tedlium3.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Prepare musan manifests"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to data/musan
|
|
if [ ! -e data/manifests/.musan.done ]; then
|
|
mkdir -p data/manifests
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
touch data/manifests/.musan.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "Stage 3: Compute fbank for tedlium3"
|
|
|
|
if [ ! -e data/fbank/.tedlium3.done ]; then
|
|
mkdir -p data/fbank
|
|
|
|
python3 ./local/compute_fbank_tedlium.py
|
|
|
|
gunzip -c data/fbank/tedlium_cuts_train.jsonl.gz | shuf | \
|
|
gzip -c > data/fbank/tedlium_cuts_train-shuf.jsonl.gz
|
|
mv data/fbank/tedlium_cuts_train-shuf.jsonl.gz \
|
|
data/fbank/tedlium_cuts_train.jsonl.gz
|
|
|
|
touch data/fbank/.tedlium3.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute fbank for musan"
|
|
if [ ! -e data/fbank/.musan.done ]; then
|
|
mkdir -p data/fbank
|
|
python3 ./local/compute_fbank_musan.py
|
|
touch data/fbank/.musan.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Prepare BPE train data and set of words"
|
|
lang_dir=data/lang
|
|
mkdir -p $lang_dir
|
|
|
|
if [ ! -f $lang_dir/train.txt ]; then
|
|
gunzip -c $dl_dir/tedlium3/LM/*.en.gz | sed 's: <\/s>::g' > $lang_dir/train_orig.txt
|
|
|
|
./local/prepare_transcripts.py \
|
|
--input-text-path $lang_dir/train_orig.txt \
|
|
--output-text-path $lang_dir/train.txt
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/words.txt ]; then
|
|
|
|
awk '{print $1}' $dl_dir/tedlium3/TEDLIUM.152k.dic |
|
|
sed 's:([0-9])::g' | sort | uniq > $lang_dir/words_orig.txt
|
|
|
|
./local/prepare_words.py --lang-dir $lang_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
log "Stage 6: Prepare BPE based lang"
|
|
|
|
for vocab_size in ${vocab_sizes[@]}; do
|
|
lang_dir=data/lang_bpe_${vocab_size}
|
|
mkdir -p $lang_dir
|
|
# We reuse words.txt from phone based lexicon
|
|
# so that the two can share G.pt later.
|
|
cp data/lang/words.txt $lang_dir
|
|
|
|
./local/train_bpe_model.py \
|
|
--lang-dir $lang_dir \
|
|
--vocab-size $vocab_size \
|
|
--transcript data/lang/train.txt
|
|
|
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
|
./local/prepare_lang_bpe.py --lang-dir $lang_dir --oov "<unk>"
|
|
fi
|
|
done
|
|
fi
|
|
|
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|
log "Stage 7: Prepare G"
|
|
# We assume you have installed kaldilm, if not, please install
|
|
# it using: pip install kaldilm
|
|
|
|
mkdir -p data/lm
|
|
if [ ! -f data/lm/G_4_gram_small.fst.txt ]; then
|
|
# It is used in building HLG
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="data/lang/words.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=4 \
|
|
--max-arpa-warnings=-1 \
|
|
$dl_dir/lm/4gram_small.arpa > data/lm/G_4_gram_small.fst.txt
|
|
fi
|
|
|
|
if [ ! -f data/lm/G_4_gram_big.fst.txt ]; then
|
|
# It is used for LM rescoring
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="data/lang/words.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=4 \
|
|
--max-arpa-warnings=-1 \
|
|
$dl_dir/lm/4gram_big.arpa > data/lm/G_4_gram_big.fst.txt
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
|
log "Stage 8: Compile HLG"
|
|
|
|
for vocab_size in ${vocab_sizes[@]}; do
|
|
lang_dir=data/lang_bpe_${vocab_size}
|
|
|
|
if [ ! -f $lang_dir/HLG.pt ]; then
|
|
./local/compile_hlg.py \
|
|
--lang-dir $lang_dir \
|
|
--lm G_4_gram_small
|
|
fi
|
|
done
|
|
fi
|