icefall/egs/swbd/ASR/prepare.sh
2023-10-25 00:03:33 +08:00

464 lines
16 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=15
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. Most of them can't be downloaded automatically
# as they are not publically available and require a license purchased
# from the LDC.
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=./download
# swbd1_dir="/export/corpora3/LDC/LDC97S62"
swbd1_dir=./download/LDC97S62/
# eval2000_dir contains the following files and directories
# downloaded from LDC website:
# - LDC2002S09
# - hub5e_00
# - LDC2002T43
# - reference
eval2000_dir="/export/corpora2/LDC/eval2000"
rt03_dir="/export/corpora/LDC/LDC2007S10"
fisher_dir="/export/corpora3/LDC/LDC2004T19"
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 5000
# 2000
1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "swbd1_dir: $swbd1_dir"
log "eval2000_dir: $eval2000_dir"
log "rt03_dir: $rt03_dir"
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare SwitchBoard manifest"
# We assume that you have downloaded the SwitchBoard corpus
# to respective dirs
mkdir -p data/manifests
if [ ! -e data/manifests/.swbd.done ]; then
lhotse prepare switchboard --absolute-paths 1 --omit-silence $swbd1_dir data/manifests/swbd
./local/normalize_and_filter_supervisions.py \
data/manifests/swbd/swbd_supervisions_all.jsonl.gz \
data/manifests/swbd/swbd_supervisions_all_norm.jsonl.gz
mv data/manifests/swbd/swbd_supervisions_all.jsonl.gz data/manifests/swbd/swbd_supervisions_orig.jsonl.gz
mv data/manifests/swbd/swbd_supervisions_all_norm.jsonl.gz data/manifests/swbd/swbd_supervisions_all.jsonl.gz
lhotse cut simple \
-r data/manifests/swbd/swbd_recordings_all.jsonl.gz \
-s data/manifests/swbd/swbd_supervisions_all.jsonl.gz \
data/manifests/swbd/swbd_train_all.jsonl.gz
lhotse cut trim-to-supervisions \
--discard-overlapping \
--discard-extra-channels \
data/manifests/swbd/swbd_train_all.jsonl.gz \
data/manifests/swbd/swbd_train_all_trimmed.jsonl.gz
num_splits=16
mkdir -p data/manifests/swbd_split${num_splits}
lhotse split ${num_splits} \
data/manifests/swbd/swbd_train_all_trimmed.jsonl.gz \
data/manifests/swbd_split${num_splits}
lhotse prepare eval2000 --absolute-paths 1 $eval2000_dir data/manifests/eval2000
./local/normalize_eval2000.py \
data/manifests/eval2000/eval2000_supervisions_unnorm.jsonl.gz \
data/manifests/eval2000/eval2000_supervisions_all.jsonl.gz
lhotse cut simple \
-r data/manifests/eval2000/eval2000_recordings_all.jsonl.gz \
-s data/manifests/eval2000/eval2000_supervisions_all.jsonl.gz \
data/manifests/eval2000/eval2000_cuts_all.jsonl.gz
lhotse cut trim-to-supervisions \
--discard-overlapping \
--discard-extra-channels \
data/manifests/eval2000/eval2000_cuts_all.jsonl.gz \
data/manifests/eval2000/eval2000_cuts_all_trimmed.jsonl.gz
sed -e 's:((:(:' -e 's:<B_ASIDE>::g' -e 's:<E_ASIDE>::g' \
$eval2000_dir/LDC2002T43/reference/hub5e00.english.000405.stm > data/manifests/eval2000/stm
cp $eval2000_dir/LDC2002T43/reference/en20000405_hub5.glm $dir/glm
# ./local/rt03_data_prep.sh $rt03_dir
# normalize eval2000 and rt03 texts by
# 1) convert upper to lower
# 2) remove tags (%AH) (%HESITATION) (%UH)
# 3) remove <B_ASIDE> <E_ASIDE>
# 4) remove "(" or ")"
# for x in rt03; do
# cp data/local/${x}/text data/local/${x}/text.org
# paste -d "" \
# <(cut -f 1 -d" " data/local/${x}/text.org) \
# <(awk '{$1=""; print tolower($0)}' data/local/${x}/text.org | perl -pe 's| \(\%.*\)||g' | perl -pe 's| \<.*\>||g' | sed -e "s/(//g" -e "s/)//g") |
# sed -e 's/\s\+/ /g' >data/local/${x}/text
# rm data/local/${x}/text.org
# done
# lhotse fix data/manifests_rt03/swbd_recordings_rt03.jsonl.gz data/manifests_rt03/swbd_supervisions_rt03.jsonl.gz data/manifests
touch data/manifests/.swbd.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to $dl_dir/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3 I: Compute fbank for SwitchBoard"
if [ ! -e data/fbank/.swbd.done ]; then
mkdir -p data/fbank/swbd_split${num_splits}/
for index in $(seq 1 16); do
./local/compute_fbank_swbd.py --split-index ${index} &
done
wait
pieces=$(find data/fbank/swbd_split${num_splits} -name "swbd_cuts_all.*.jsonl.gz")
lhotse combine $pieces data/fbank/swbd_cuts_all.jsonl.gz
touch data/fbank/.swbd.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3 II: Compute fbank for eval2000"
if [ ! -e data/fbank/.eval2000.done ]; then
mkdir -p data/fbank/eval2000/
./local/compute_fbank_eval2000.py
touch data/fbank/.eval2000.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare phone based lang"
lang_dir=data/lang_phone
mkdir -p $lang_dir
if ! which jq; then
echo "This script is intended to be used with jq but you have not installed jq
Note: in Linux, you can install jq with the following command:
1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
2. chmod +x ./jq
3. cp jq /usr/bin" && exit 1
fi
if [ ! -f $lang_dir/text ] || [ ! -s $lang_dir/text ]; then
log "Prepare text."
gunzip -c data/manifests/swbd/swbd_supervisions_all.jsonl.gz \
| jq '.text' | sed 's/"//g' > $lang_dir/text
fi
log "Prepare dict"
./local/swbd1_prepare_dict.sh
cut -f 2- -d" " $lang_dir/text >${lang_dir}/input.txt
# [noise] nsn
# !sil sil
# <unk> spn
cat data/local/dict_nosp/lexicon.txt | sed 's/-//g' | sed 's/\[vocalizednoise\]/\[vocalized-noise\]/g' |
sort | uniq >$lang_dir/lexicon_lower.txt
cat $lang_dir/lexicon_lower.txt | tr a-z A-Z > $lang_dir/lexicon.txt
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_dir
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
cp data/lang_phone/words.txt $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
cat data/lang_phone/text | cut -d " " -f 2- >$lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bpe.model
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst
fi
done
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Prepare bigram token-level P for MMI training"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
if [ ! -f $lang_dir/transcript_tokens.txt ]; then
./local/convert_transcript_words_to_tokens.py \
--lexicon $lang_dir/lexicon.txt \
--transcript $lang_dir/transcript_words.txt \
--oov "<UNK>" \
>$lang_dir/transcript_tokens.txt
fi
if [ ! -f $lang_dir/P.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order 2 \
-text $lang_dir/transcript_tokens.txt \
-lm $lang_dir/P.arpa
fi
if [ ! -f $lang_dir/P.fst.txt ]; then
python3 -m kaldilm \
--read-symbol-table="$lang_dir/tokens.txt" \
--disambig-symbol='#0' \
--max-order=2 \
$lang_dir/P.arpa >$lang_dir/P.fst.txt
fi
done
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Prepare G"
lang_dir=data/lang_phone
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building HLG
./shared/make_kn_lm.py \
-ngram-order 3 \
-text ${lang_dir}/input.txt \
-lm data/lm/3-gram.arpa
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
data/lm/3-gram.arpa >data/lm/G_3_gram.fst.txt
fi
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
# It is used for LM rescoring
./shared/make_kn_lm.py \
-ngram-order 4 \
-text ${lang_dir}/input.txt \
-lm data/lm/4-gram.arpa
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
data/lm/4-gram.arpa >data/lm/G_4_gram.fst.txt
fi
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Compile HLG"
./local/compile_hlg.py --lang-dir data/lang_phone
# Note If ./local/compile_hlg.py throws OOM,
# please switch to the following command
#
# ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir
# Note If ./local/compile_hlg.py throws OOM,
# please switch to the following command
#
# ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir
done
fi
# Compile LG for RNN-T fast_beam_search decoding
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Compile LG"
./local/compile_lg.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_lg.py --lang-dir $lang_dir
done
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Generate LM training data"
for vocab_size in ${vocab_sizes[@]}; do
log "Processing vocab_size == ${vocab_size}"
lang_dir=data/lang_bpe_${vocab_size}
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
if [ ! -f $out_dir/train.txt ]; then
tail -n 250000 data/lang_phone/input.txt > $out_dir/train.txt
fi
./local/prepare_lm_training_data.py \
--bpe-model $lang_dir/bpe.model \
--lm-data data/lang_phone/input.txt \
--lm-archive $out_dir/lm_data.pt
done
fi
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
log "Stage 12: Generate LM validation data"
for vocab_size in ${vocab_sizes[@]}; do
log "Processing vocab_size == ${vocab_size}"
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
if [ ! -f $out_dir/valid.txt ]; then
head -n 14332 data/lang_phone/input.txt > $out_dir/valid.txt
fi
lang_dir=data/lang_bpe_${vocab_size}
./local/prepare_lm_training_data.py \
--bpe-model $lang_dir/bpe.model \
--lm-data $out_dir/valid.txt \
--lm-archive $out_dir/lm_data-valid.pt
done
fi
if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
log "Stage 13: Generate LM test data"
testsets=(eval2000)
for testset in ${testsets[@]}; do
for vocab_size in ${vocab_sizes[@]}; do
log "Processing vocab_size == ${vocab_size}"
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
if [ ! -f $out_dir/${testset}.txt ]; then
gunzip -c data/manifests/${testset}/eval2000_supervisions_all.jsonl.gz \
| jq '.text' | sed 's/"//g' > $out_dir/${testset}.txt
fi
lang_dir=data/lang_bpe_${vocab_size}
./local/prepare_lm_training_data.py \
--bpe-model $lang_dir/bpe.model \
--lm-data $out_dir/${testset}.txt \
--lm-archive $out_dir/lm_data-${testset}.pt
done
done
fi
if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
log "Stage 14: Sort LM training data"
testsets=(eval2000)
# Sort LM training data by sentence length in descending order
# for ease of training.
#
# Sentence length equals to the number of BPE tokens
# in a sentence.
for vocab_size in ${vocab_sizes[@]}; do
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data.pt \
--out-lm-data $out_dir/sorted_lm_data.pt \
--out-statistics $out_dir/statistics.txt
for testset in ${testsets[@]}; do
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data-${testset}.pt \
--out-lm-data $out_dir/sorted_lm_data-${testset}.pt \
--out-statistics $out_dir/statistics-test-${testset}.txt
done
done
fi