mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* mgb2 * mgb2 * adding pruned transducer stateless to mgb2 * update display_manifest_statistics.py * . * stateless transducer MGB-2 * Update README.md * Update RESULTS.md * Update prepare_lang_bpe.py * Update asr_datamodule.py * .nfs removed * Adding symlink * . * resolving conflicts * Update .gitignore * black formatting * Update compile_hlg.py * Update compute_fbank_musan.py * Update convert_transcript_words_to_tokens.py * Update download_lm.py * Update generate_unique_lexicon.py * adding simlinks * fixing symbolic links
102 lines
3.4 KiB
Python
Executable File
102 lines
3.4 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2022 Johns Hopkins University (Amir Hussein)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
"""
|
|
This file computes fbank features of the MGB2 dataset.
|
|
It looks for manifests in the directory data/manifests.
|
|
|
|
The generated fbank features are saved in data/fbank.
|
|
"""
|
|
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
|
from lhotse.recipes.utils import read_manifests_if_cached
|
|
|
|
from icefall.utils import get_executor
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
|
|
def compute_fbank_mgb2():
|
|
src_dir = Path("data/manifests")
|
|
output_dir = Path("data/fbank")
|
|
num_jobs = min(15, os.cpu_count())
|
|
num_mel_bins = 80
|
|
|
|
dataset_parts = (
|
|
"train",
|
|
"test",
|
|
"dev",
|
|
)
|
|
manifests = read_manifests_if_cached(
|
|
prefix="mgb2", dataset_parts=dataset_parts, output_dir=src_dir
|
|
)
|
|
assert manifests is not None
|
|
assert len(manifests) == len(dataset_parts), (
|
|
len(manifests),
|
|
len(dataset_parts),
|
|
list(manifests.keys()),
|
|
dataset_parts,
|
|
)
|
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
|
|
|
with get_executor() as ex: # Initialize the executor only once.
|
|
for partition, m in manifests.items():
|
|
if (output_dir / f"cuts_{partition}.json.gz").is_file():
|
|
logging.info(f"{partition} already exists - skipping.")
|
|
continue
|
|
logging.info(f"Processing {partition}")
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=m["recordings"],
|
|
supervisions=m["supervisions"],
|
|
)
|
|
if "train" in partition:
|
|
cut_set = (
|
|
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
|
)
|
|
cut_set = cut_set.compute_and_store_features(
|
|
extractor=extractor,
|
|
storage_path=f"{output_dir}/feats_{partition}",
|
|
# when an executor is specified, make more partitions
|
|
num_jobs=num_jobs if ex is None else 80,
|
|
executor=ex,
|
|
storage_type=LilcomChunkyWriter,
|
|
)
|
|
logging.info("About to split cuts into smaller chunks.")
|
|
cut_set = cut_set.trim_to_supervisions(
|
|
keep_overlapping=False, min_duration=None
|
|
)
|
|
cut_set.to_file(output_dir / f"cuts_{partition}.jsonl.gz")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
compute_fbank_mgb2()
|