mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* copy files * update train.py * small fixes * Add decode.py * Fix dataloader in decode.py * add blank penalty * Add blank-penalty to other decoding method * Minor fixes * add zipformer2 recipe * Minor fixes * Remove pruned7 * export and test models * Replace bpe with tokens in export.py and pretrain.py * Minor fixes * Minor fixes * Minor fixes * Fix export * Update results * Fix zipformer-ctc * Fix ci * Fix ci * Fix CI * Fix CI --------- Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
296 lines
9.6 KiB
Python
296 lines
9.6 KiB
Python
# Copyright 2022 Xiaomi Corp. (authors: Wei Kang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import warnings
|
|
from typing import List
|
|
|
|
import k2
|
|
import torch
|
|
import torch.nn as nn
|
|
from beam_search import Hypothesis, HypothesisList, get_hyps_shape
|
|
from decode_stream import DecodeStream
|
|
|
|
from icefall.decode import one_best_decoding
|
|
from icefall.utils import get_texts
|
|
|
|
|
|
def greedy_search(
|
|
model: nn.Module,
|
|
encoder_out: torch.Tensor,
|
|
streams: List[DecodeStream],
|
|
blank_penalty: float = 0.0,
|
|
) -> None:
|
|
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
|
|
|
Args:
|
|
model:
|
|
The transducer model.
|
|
encoder_out:
|
|
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
|
streams:
|
|
A list of Stream objects.
|
|
"""
|
|
assert len(streams) == encoder_out.size(0)
|
|
assert encoder_out.ndim == 3
|
|
|
|
blank_id = model.decoder.blank_id
|
|
context_size = model.decoder.context_size
|
|
device = model.device
|
|
T = encoder_out.size(1)
|
|
|
|
decoder_input = torch.tensor(
|
|
[stream.hyp[-context_size:] for stream in streams],
|
|
device=device,
|
|
dtype=torch.int64,
|
|
)
|
|
# decoder_out is of shape (N, 1, decoder_out_dim)
|
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
|
|
for t in range(T):
|
|
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
|
|
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
|
|
|
|
logits = model.joiner(
|
|
current_encoder_out.unsqueeze(2),
|
|
decoder_out.unsqueeze(1),
|
|
project_input=False,
|
|
)
|
|
# logits'shape (batch_size, vocab_size)
|
|
logits = logits.squeeze(1).squeeze(1)
|
|
|
|
if blank_penalty != 0.0:
|
|
logits[:, 0] -= blank_penalty
|
|
|
|
assert logits.ndim == 2, logits.shape
|
|
y = logits.argmax(dim=1).tolist()
|
|
emitted = False
|
|
for i, v in enumerate(y):
|
|
if v != blank_id:
|
|
streams[i].hyp.append(v)
|
|
emitted = True
|
|
if emitted:
|
|
# update decoder output
|
|
decoder_input = torch.tensor(
|
|
[stream.hyp[-context_size:] for stream in streams],
|
|
device=device,
|
|
dtype=torch.int64,
|
|
)
|
|
decoder_out = model.decoder(
|
|
decoder_input,
|
|
need_pad=False,
|
|
)
|
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
|
|
|
|
def modified_beam_search(
|
|
model: nn.Module,
|
|
encoder_out: torch.Tensor,
|
|
streams: List[DecodeStream],
|
|
num_active_paths: int = 4,
|
|
blank_penalty: float = 0.0,
|
|
) -> None:
|
|
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
|
|
|
Args:
|
|
model:
|
|
The RNN-T model.
|
|
encoder_out:
|
|
A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of
|
|
the encoder model.
|
|
streams:
|
|
A list of stream objects.
|
|
num_active_paths:
|
|
Number of active paths during the beam search.
|
|
"""
|
|
assert encoder_out.ndim == 3, encoder_out.shape
|
|
assert len(streams) == encoder_out.size(0)
|
|
|
|
blank_id = model.decoder.blank_id
|
|
context_size = model.decoder.context_size
|
|
device = next(model.parameters()).device
|
|
batch_size = len(streams)
|
|
T = encoder_out.size(1)
|
|
|
|
B = [stream.hyps for stream in streams]
|
|
|
|
for t in range(T):
|
|
current_encoder_out = encoder_out[:, t].unsqueeze(1).unsqueeze(1)
|
|
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
|
|
|
hyps_shape = get_hyps_shape(B).to(device)
|
|
|
|
A = [list(b) for b in B]
|
|
B = [HypothesisList() for _ in range(batch_size)]
|
|
|
|
ys_log_probs = torch.stack(
|
|
[hyp.log_prob.reshape(1) for hyps in A for hyp in hyps], dim=0
|
|
) # (num_hyps, 1)
|
|
|
|
decoder_input = torch.tensor(
|
|
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
|
device=device,
|
|
dtype=torch.int64,
|
|
) # (num_hyps, context_size)
|
|
|
|
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
# decoder_out is of shape (num_hyps, 1, 1, decoder_output_dim)
|
|
|
|
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
|
# as index, so we use `to(torch.int64)` below.
|
|
current_encoder_out = torch.index_select(
|
|
current_encoder_out,
|
|
dim=0,
|
|
index=hyps_shape.row_ids(1).to(torch.int64),
|
|
) # (num_hyps, encoder_out_dim)
|
|
|
|
logits = model.joiner(current_encoder_out, decoder_out, project_input=False)
|
|
# logits is of shape (num_hyps, 1, 1, vocab_size)
|
|
|
|
logits = logits.squeeze(1).squeeze(1)
|
|
|
|
if blank_penalty != 0.0:
|
|
logits[:, 0] -= blank_penalty
|
|
|
|
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
|
|
|
log_probs.add_(ys_log_probs)
|
|
|
|
vocab_size = log_probs.size(-1)
|
|
|
|
log_probs = log_probs.reshape(-1)
|
|
|
|
row_splits = hyps_shape.row_splits(1) * vocab_size
|
|
log_probs_shape = k2.ragged.create_ragged_shape2(
|
|
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
|
)
|
|
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
|
|
|
|
for i in range(batch_size):
|
|
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(num_active_paths)
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
|
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
|
|
|
for k in range(len(topk_hyp_indexes)):
|
|
hyp_idx = topk_hyp_indexes[k]
|
|
hyp = A[i][hyp_idx]
|
|
|
|
new_ys = hyp.ys[:]
|
|
new_token = topk_token_indexes[k]
|
|
if new_token != blank_id:
|
|
new_ys.append(new_token)
|
|
|
|
new_log_prob = topk_log_probs[k]
|
|
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
|
B[i].add(new_hyp)
|
|
|
|
for i in range(batch_size):
|
|
streams[i].hyps = B[i]
|
|
|
|
|
|
def fast_beam_search_one_best(
|
|
model: nn.Module,
|
|
encoder_out: torch.Tensor,
|
|
processed_lens: torch.Tensor,
|
|
streams: List[DecodeStream],
|
|
beam: float,
|
|
max_states: int,
|
|
max_contexts: int,
|
|
blank_penalty: float = 0.0,
|
|
) -> None:
|
|
"""It limits the maximum number of symbols per frame to 1.
|
|
|
|
A lattice is first generated by Fsa-based beam search, then we get the
|
|
recognition by applying shortest path on the lattice.
|
|
|
|
Args:
|
|
model:
|
|
An instance of `Transducer`.
|
|
encoder_out:
|
|
A tensor of shape (N, T, C) from the encoder.
|
|
processed_lens:
|
|
A tensor of shape (N,) containing the number of processed frames
|
|
in `encoder_out` before padding.
|
|
streams:
|
|
A list of stream objects.
|
|
beam:
|
|
Beam value, similar to the beam used in Kaldi..
|
|
max_states:
|
|
Max states per stream per frame.
|
|
max_contexts:
|
|
Max contexts pre stream per frame.
|
|
"""
|
|
assert encoder_out.ndim == 3
|
|
B, T, C = encoder_out.shape
|
|
assert B == len(streams)
|
|
|
|
context_size = model.decoder.context_size
|
|
vocab_size = model.decoder.vocab_size
|
|
|
|
config = k2.RnntDecodingConfig(
|
|
vocab_size=vocab_size,
|
|
decoder_history_len=context_size,
|
|
beam=beam,
|
|
max_contexts=max_contexts,
|
|
max_states=max_states,
|
|
)
|
|
individual_streams = []
|
|
for i in range(B):
|
|
individual_streams.append(streams[i].rnnt_decoding_stream)
|
|
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
|
|
|
|
for t in range(T):
|
|
# shape is a RaggedShape of shape (B, context)
|
|
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
|
shape, contexts = decoding_streams.get_contexts()
|
|
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
|
contexts = contexts.to(torch.int64)
|
|
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
|
decoder_out = model.decoder(contexts, need_pad=False)
|
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
# current_encoder_out is of shape
|
|
# (shape.NumElements(), 1, joiner_dim)
|
|
# fmt: off
|
|
current_encoder_out = torch.index_select(
|
|
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
|
)
|
|
# fmt: on
|
|
logits = model.joiner(
|
|
current_encoder_out.unsqueeze(2),
|
|
decoder_out.unsqueeze(1),
|
|
project_input=False,
|
|
)
|
|
logits = logits.squeeze(1).squeeze(1)
|
|
|
|
if blank_penalty != 0.0:
|
|
logits[:, 0] -= blank_penalty
|
|
|
|
log_probs = logits.log_softmax(dim=-1)
|
|
decoding_streams.advance(log_probs)
|
|
|
|
decoding_streams.terminate_and_flush_to_streams()
|
|
|
|
lattice = decoding_streams.format_output(processed_lens.tolist())
|
|
best_path = one_best_decoding(lattice)
|
|
hyp_tokens = get_texts(best_path)
|
|
|
|
for i in range(B):
|
|
streams[i].hyp = hyp_tokens[i]
|