icefall/egs/librispeech/ASR/zipformer/streaming_beam_search.py
Wei Kang 219bba1310
zipformer wenetspeech (#1130)
* copy files

* update train.py

* small fixes

* Add decode.py

* Fix dataloader in decode.py

* add blank penalty

* Add blank-penalty to other decoding method

* Minor fixes

* add zipformer2 recipe

* Minor fixes

* Remove pruned7

* export and test models

* Replace bpe with tokens in export.py and pretrain.py

* Minor fixes

* Minor fixes

* Minor fixes

* Fix export

* Update results

* Fix zipformer-ctc

* Fix ci

* Fix ci

* Fix CI

* Fix CI

---------

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
2023-06-26 09:33:18 +08:00

296 lines
9.6 KiB
Python

# Copyright 2022 Xiaomi Corp. (authors: Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import List
import k2
import torch
import torch.nn as nn
from beam_search import Hypothesis, HypothesisList, get_hyps_shape
from decode_stream import DecodeStream
from icefall.decode import one_best_decoding
from icefall.utils import get_texts
def greedy_search(
model: nn.Module,
encoder_out: torch.Tensor,
streams: List[DecodeStream],
blank_penalty: float = 0.0,
) -> None:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
Args:
model:
The transducer model.
encoder_out:
Output from the encoder. Its shape is (N, T, C), where N >= 1.
streams:
A list of Stream objects.
"""
assert len(streams) == encoder_out.size(0)
assert encoder_out.ndim == 3
blank_id = model.decoder.blank_id
context_size = model.decoder.context_size
device = model.device
T = encoder_out.size(1)
decoder_input = torch.tensor(
[stream.hyp[-context_size:] for stream in streams],
device=device,
dtype=torch.int64,
)
# decoder_out is of shape (N, 1, decoder_out_dim)
decoder_out = model.decoder(decoder_input, need_pad=False)
decoder_out = model.joiner.decoder_proj(decoder_out)
for t in range(T):
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
logits = model.joiner(
current_encoder_out.unsqueeze(2),
decoder_out.unsqueeze(1),
project_input=False,
)
# logits'shape (batch_size, vocab_size)
logits = logits.squeeze(1).squeeze(1)
if blank_penalty != 0.0:
logits[:, 0] -= blank_penalty
assert logits.ndim == 2, logits.shape
y = logits.argmax(dim=1).tolist()
emitted = False
for i, v in enumerate(y):
if v != blank_id:
streams[i].hyp.append(v)
emitted = True
if emitted:
# update decoder output
decoder_input = torch.tensor(
[stream.hyp[-context_size:] for stream in streams],
device=device,
dtype=torch.int64,
)
decoder_out = model.decoder(
decoder_input,
need_pad=False,
)
decoder_out = model.joiner.decoder_proj(decoder_out)
def modified_beam_search(
model: nn.Module,
encoder_out: torch.Tensor,
streams: List[DecodeStream],
num_active_paths: int = 4,
blank_penalty: float = 0.0,
) -> None:
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
Args:
model:
The RNN-T model.
encoder_out:
A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of
the encoder model.
streams:
A list of stream objects.
num_active_paths:
Number of active paths during the beam search.
"""
assert encoder_out.ndim == 3, encoder_out.shape
assert len(streams) == encoder_out.size(0)
blank_id = model.decoder.blank_id
context_size = model.decoder.context_size
device = next(model.parameters()).device
batch_size = len(streams)
T = encoder_out.size(1)
B = [stream.hyps for stream in streams]
for t in range(T):
current_encoder_out = encoder_out[:, t].unsqueeze(1).unsqueeze(1)
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
hyps_shape = get_hyps_shape(B).to(device)
A = [list(b) for b in B]
B = [HypothesisList() for _ in range(batch_size)]
ys_log_probs = torch.stack(
[hyp.log_prob.reshape(1) for hyps in A for hyp in hyps], dim=0
) # (num_hyps, 1)
decoder_input = torch.tensor(
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
device=device,
dtype=torch.int64,
) # (num_hyps, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
decoder_out = model.joiner.decoder_proj(decoder_out)
# decoder_out is of shape (num_hyps, 1, 1, decoder_output_dim)
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
# as index, so we use `to(torch.int64)` below.
current_encoder_out = torch.index_select(
current_encoder_out,
dim=0,
index=hyps_shape.row_ids(1).to(torch.int64),
) # (num_hyps, encoder_out_dim)
logits = model.joiner(current_encoder_out, decoder_out, project_input=False)
# logits is of shape (num_hyps, 1, 1, vocab_size)
logits = logits.squeeze(1).squeeze(1)
if blank_penalty != 0.0:
logits[:, 0] -= blank_penalty
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
log_probs.add_(ys_log_probs)
vocab_size = log_probs.size(-1)
log_probs = log_probs.reshape(-1)
row_splits = hyps_shape.row_splits(1) * vocab_size
log_probs_shape = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=log_probs.numel()
)
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
for i in range(batch_size):
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(num_active_paths)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
topk_token_indexes = (topk_indexes % vocab_size).tolist()
for k in range(len(topk_hyp_indexes)):
hyp_idx = topk_hyp_indexes[k]
hyp = A[i][hyp_idx]
new_ys = hyp.ys[:]
new_token = topk_token_indexes[k]
if new_token != blank_id:
new_ys.append(new_token)
new_log_prob = topk_log_probs[k]
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
B[i].add(new_hyp)
for i in range(batch_size):
streams[i].hyps = B[i]
def fast_beam_search_one_best(
model: nn.Module,
encoder_out: torch.Tensor,
processed_lens: torch.Tensor,
streams: List[DecodeStream],
beam: float,
max_states: int,
max_contexts: int,
blank_penalty: float = 0.0,
) -> None:
"""It limits the maximum number of symbols per frame to 1.
A lattice is first generated by Fsa-based beam search, then we get the
recognition by applying shortest path on the lattice.
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder.
processed_lens:
A tensor of shape (N,) containing the number of processed frames
in `encoder_out` before padding.
streams:
A list of stream objects.
beam:
Beam value, similar to the beam used in Kaldi..
max_states:
Max states per stream per frame.
max_contexts:
Max contexts pre stream per frame.
"""
assert encoder_out.ndim == 3
B, T, C = encoder_out.shape
assert B == len(streams)
context_size = model.decoder.context_size
vocab_size = model.decoder.vocab_size
config = k2.RnntDecodingConfig(
vocab_size=vocab_size,
decoder_history_len=context_size,
beam=beam,
max_contexts=max_contexts,
max_states=max_states,
)
individual_streams = []
for i in range(B):
individual_streams.append(streams[i].rnnt_decoding_stream)
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
for t in range(T):
# shape is a RaggedShape of shape (B, context)
# contexts is a Tensor of shape (shape.NumElements(), context_size)
shape, contexts = decoding_streams.get_contexts()
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
contexts = contexts.to(torch.int64)
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
decoder_out = model.decoder(contexts, need_pad=False)
decoder_out = model.joiner.decoder_proj(decoder_out)
# current_encoder_out is of shape
# (shape.NumElements(), 1, joiner_dim)
# fmt: off
current_encoder_out = torch.index_select(
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
)
# fmt: on
logits = model.joiner(
current_encoder_out.unsqueeze(2),
decoder_out.unsqueeze(1),
project_input=False,
)
logits = logits.squeeze(1).squeeze(1)
if blank_penalty != 0.0:
logits[:, 0] -= blank_penalty
log_probs = logits.log_softmax(dim=-1)
decoding_streams.advance(log_probs)
decoding_streams.terminate_and_flush_to_streams()
lattice = decoding_streams.format_output(processed_lens.tolist())
best_path = one_best_decoding(lattice)
hyp_tokens = get_texts(best_path)
for i in range(B):
streams[i].hyp = hyp_tokens[i]