Fangjun Kuang 2332ba312d
Begin to use multiple datasets in training (#213)
* Begin to use multiple datasets.

* Finish preparing training datasets.

* Minor fixes

* Copy files.

* Finish training code.

* Display losses for gigaspeech and librispeech separately.

* Fix decode.py

* Make the probability to select a batch from GigaSpeech configurable.

* Update results.

* Minor fixes.
2022-02-21 15:27:27 +08:00

169 lines
5.4 KiB
Python

# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
from typing import Optional
import k2
import torch
import torch.nn as nn
from encoder_interface import EncoderInterface
from icefall.utils import add_sos
class Transducer(nn.Module):
"""It implements https://arxiv.org/pdf/1211.3711.pdf
"Sequence Transduction with Recurrent Neural Networks"
"""
def __init__(
self,
encoder: EncoderInterface,
decoder: nn.Module,
joiner: nn.Module,
decoder_giga: Optional[nn.Module] = None,
joiner_giga: Optional[nn.Module] = None,
):
"""
Args:
encoder:
It is the transcription network in the paper. Its accepts
two inputs: `x` of (N, T, C) and `x_lens` of shape (N,).
It returns two tensors: `logits` of shape (N, T, C) and
`logit_lens` of shape (N,).
decoder:
It is the prediction network in the paper. Its input shape
is (N, U) and its output shape is (N, U, C). It should contain
one attribute: `blank_id`.
joiner:
It has two inputs with shapes: (N, T, C) and (N, U, C). Its
output shape is (N, T, U, C). Note that its output contains
unnormalized probs, i.e., not processed by log-softmax.
decoder_giga:
The decoder for the GigaSpeech dataset.
joiner_giga:
The joiner for the GigaSpeech dataset.
"""
super().__init__()
assert isinstance(encoder, EncoderInterface), type(encoder)
assert hasattr(decoder, "blank_id")
if decoder_giga is not None:
assert hasattr(decoder_giga, "blank_id")
self.encoder = encoder
self.decoder = decoder
self.joiner = joiner
self.decoder_giga = decoder_giga
self.joiner_giga = joiner_giga
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: k2.RaggedTensor,
libri: bool = True,
modified_transducer_prob: float = 0.0,
) -> torch.Tensor:
"""
Args:
x:
A 3-D tensor of shape (N, T, C).
x_lens:
A 1-D tensor of shape (N,). It contains the number of frames in `x`
before padding.
y:
A ragged tensor with 2 axes [utt][label]. It contains labels of each
utterance.
libri:
True to use the decoder and joiner for the LibriSpeech dataset.
False to use the decoder and joiner for the GigaSpeech dataset.
modified_transducer_prob:
The probability to use modified transducer loss.
Returns:
Return the transducer loss.
"""
assert x.ndim == 3, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.num_axes == 2, y.num_axes
assert x.size(0) == x_lens.size(0) == y.dim0
encoder_out, x_lens = self.encoder(x, x_lens)
assert torch.all(x_lens > 0)
# Now for the decoder, i.e., the prediction network
row_splits = y.shape.row_splits(1)
y_lens = row_splits[1:] - row_splits[:-1]
blank_id = self.decoder.blank_id
sos_y = add_sos(y, sos_id=blank_id)
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
sos_y_padded = sos_y_padded.to(torch.int64)
if libri:
decoder = self.decoder
joiner = self.joiner
else:
decoder = self.decoder_giga
joiner = self.joiner_giga
decoder_out = decoder(sos_y_padded)
# +1 here since a blank is prepended to each utterance.
logits = joiner(
encoder_out=encoder_out,
decoder_out=decoder_out,
encoder_out_len=x_lens,
decoder_out_len=y_lens + 1,
)
# rnnt_loss requires 0 padded targets
# Note: y does not start with SOS
y_padded = y.pad(mode="constant", padding_value=0)
# We don't put this `import` at the beginning of the file
# as it is required only in the training, not during the
# reference stage
import optimized_transducer
assert 0 <= modified_transducer_prob <= 1
if modified_transducer_prob == 0:
one_sym_per_frame = False
elif random.random() < modified_transducer_prob:
# random.random() returns a float in the range [0, 1)
one_sym_per_frame = True
else:
one_sym_per_frame = False
loss = optimized_transducer.transducer_loss(
logits=logits,
targets=y_padded,
logit_lengths=x_lens,
target_lengths=y_lens,
blank=blank_id,
reduction="sum",
one_sym_per_frame=one_sym_per_frame,
from_log_softmax=False,
)
return loss