mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* Various fixes to support torch script. * Add tests to ensure that the model is torch scriptable. * Update tests.
73 lines
2.5 KiB
Python
73 lines
2.5 KiB
Python
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class Joiner(nn.Module):
|
|
def __init__(self, input_dim: int, output_dim: int):
|
|
super().__init__()
|
|
|
|
self.input_dim = input_dim
|
|
self.output_dim = output_dim
|
|
self.output_linear = nn.Linear(input_dim, output_dim)
|
|
|
|
def forward(
|
|
self,
|
|
encoder_out: torch.Tensor,
|
|
decoder_out: torch.Tensor,
|
|
unused_encoder_out_len: Optional[torch.Tensor] = None,
|
|
unused_decoder_out_len: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
encoder_out:
|
|
Output from the encoder. Its shape is (N, T, self.input_dim).
|
|
decoder_out:
|
|
Output from the decoder. Its shape is (N, U, self.input_dim).
|
|
unused_encoder_out_len:
|
|
This is a placeholder so that we can reuse
|
|
transducer_stateless/beam_search.py in this folder as that
|
|
script assumes the joiner networks accepts 4 inputs.
|
|
unused_decoder_out_len:
|
|
Just a placeholder.
|
|
Returns:
|
|
Return a tensor of shape (N, T, U, self.output_dim).
|
|
"""
|
|
assert encoder_out.ndim == decoder_out.ndim == 3
|
|
assert encoder_out.size(0) == decoder_out.size(0)
|
|
assert encoder_out.size(2) == self.input_dim
|
|
assert decoder_out.size(2) == self.input_dim
|
|
|
|
encoder_out = encoder_out.unsqueeze(2) # (N, T, 1, C)
|
|
decoder_out = decoder_out.unsqueeze(1) # (N, 1, U, C)
|
|
x = encoder_out + decoder_out # (N, T, U, C)
|
|
|
|
activations = torch.tanh(x)
|
|
|
|
logits = self.output_linear(activations)
|
|
|
|
if not self.training:
|
|
# We reuse the beam_search.py from transducer_stateless,
|
|
# which expects that the joiner network outputs
|
|
# a 2-D tensor.
|
|
logits = logits.squeeze(2).squeeze(1)
|
|
|
|
return logits
|