Fangjun Kuang f6ce135608
Various fixes to support torch script. (#371)
* Various fixes to support torch script.

* Add tests to ensure that the model is torch scriptable.

* Update tests.
2022-05-16 21:46:59 +08:00

73 lines
2.5 KiB
Python

# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
import torch.nn as nn
class Joiner(nn.Module):
def __init__(self, input_dim: int, output_dim: int):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.output_linear = nn.Linear(input_dim, output_dim)
def forward(
self,
encoder_out: torch.Tensor,
decoder_out: torch.Tensor,
unused_encoder_out_len: Optional[torch.Tensor] = None,
unused_decoder_out_len: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Args:
encoder_out:
Output from the encoder. Its shape is (N, T, self.input_dim).
decoder_out:
Output from the decoder. Its shape is (N, U, self.input_dim).
unused_encoder_out_len:
This is a placeholder so that we can reuse
transducer_stateless/beam_search.py in this folder as that
script assumes the joiner networks accepts 4 inputs.
unused_decoder_out_len:
Just a placeholder.
Returns:
Return a tensor of shape (N, T, U, self.output_dim).
"""
assert encoder_out.ndim == decoder_out.ndim == 3
assert encoder_out.size(0) == decoder_out.size(0)
assert encoder_out.size(2) == self.input_dim
assert decoder_out.size(2) == self.input_dim
encoder_out = encoder_out.unsqueeze(2) # (N, T, 1, C)
decoder_out = decoder_out.unsqueeze(1) # (N, 1, U, C)
x = encoder_out + decoder_out # (N, T, U, C)
activations = torch.tanh(x)
logits = self.output_linear(activations)
if not self.training:
# We reuse the beam_search.py from transducer_stateless,
# which expects that the joiner network outputs
# a 2-D tensor.
logits = logits.squeeze(2).squeeze(1)
return logits