mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
215 lines
6.5 KiB
Python
215 lines
6.5 KiB
Python
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
This file replaces various modules in a model.
|
|
Specifically, ActivationBalancer is replaced with an identity operator;
|
|
Whiten is also replaced with an identity operator;
|
|
BasicNorm is replaced by a module with `exp` removed.
|
|
"""
|
|
|
|
import copy
|
|
from typing import List, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from scaling import ActivationBalancer, BasicNorm, Whiten
|
|
from zipformer import PoolingModule
|
|
|
|
|
|
class PoolingModuleNoProj(nn.Module):
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
cached_len: torch.Tensor,
|
|
cached_avg: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Args:
|
|
x:
|
|
A tensor of shape (T, N, C)
|
|
cached_len:
|
|
A tensor of shape (N,)
|
|
cached_avg:
|
|
A tensor of shape (N, C)
|
|
Returns:
|
|
Return a tuple containing:
|
|
- new_x
|
|
- new_cached_len
|
|
- new_cached_avg
|
|
"""
|
|
x = x.cumsum(dim=0) # (T, N, C)
|
|
x = x + (cached_avg * cached_len.unsqueeze(1)).unsqueeze(0)
|
|
# Cumulated numbers of frames from start
|
|
cum_mask = torch.arange(1, x.size(0) + 1, device=x.device)
|
|
cum_mask = cum_mask.unsqueeze(1) + cached_len.unsqueeze(0) # (T, N)
|
|
pooling_mask = (1.0 / cum_mask).unsqueeze(2)
|
|
# now pooling_mask: (T, N, 1)
|
|
x = x * pooling_mask # (T, N, C)
|
|
|
|
cached_len = cached_len + x.size(0)
|
|
cached_avg = x[-1]
|
|
|
|
return x, cached_len, cached_avg
|
|
|
|
|
|
class PoolingModuleWithProj(nn.Module):
|
|
def __init__(self, proj: torch.nn.Module):
|
|
super().__init__()
|
|
self.proj = proj
|
|
self.pooling = PoolingModuleNoProj()
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
cached_len: torch.Tensor,
|
|
cached_avg: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Args:
|
|
x:
|
|
A tensor of shape (T, N, C)
|
|
cached_len:
|
|
A tensor of shape (N,)
|
|
cached_avg:
|
|
A tensor of shape (N, C)
|
|
Returns:
|
|
Return a tuple containing:
|
|
- new_x
|
|
- new_cached_len
|
|
- new_cached_avg
|
|
"""
|
|
x, cached_len, cached_avg = self.pooling(x, cached_len, cached_avg)
|
|
return self.proj(x), cached_len, cached_avg
|
|
|
|
def streaming_forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
cached_len: torch.Tensor,
|
|
cached_avg: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Args:
|
|
x:
|
|
A tensor of shape (T, N, C)
|
|
cached_len:
|
|
A tensor of shape (N,)
|
|
cached_avg:
|
|
A tensor of shape (N, C)
|
|
Returns:
|
|
Return a tuple containing:
|
|
- new_x
|
|
- new_cached_len
|
|
- new_cached_avg
|
|
"""
|
|
x, cached_len, cached_avg = self.pooling(x, cached_len, cached_avg)
|
|
return self.proj(x), cached_len, cached_avg
|
|
|
|
|
|
class NonScaledNorm(nn.Module):
|
|
"""See BasicNorm for doc"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_channels: int,
|
|
eps_exp: float,
|
|
channel_dim: int = -1, # CAUTION: see documentation.
|
|
):
|
|
super().__init__()
|
|
self.num_channels = num_channels
|
|
self.channel_dim = channel_dim
|
|
self.eps_exp = eps_exp
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
if not torch.jit.is_tracing():
|
|
assert x.shape[self.channel_dim] == self.num_channels
|
|
scales = (
|
|
torch.mean(x * x, dim=self.channel_dim, keepdim=True) + self.eps_exp
|
|
).pow(-0.5)
|
|
return x * scales
|
|
|
|
|
|
def convert_basic_norm(basic_norm: BasicNorm) -> NonScaledNorm:
|
|
assert isinstance(basic_norm, BasicNorm), type(basic_norm)
|
|
norm = NonScaledNorm(
|
|
num_channels=basic_norm.num_channels,
|
|
eps_exp=basic_norm.eps.data.exp().item(),
|
|
channel_dim=basic_norm.channel_dim,
|
|
)
|
|
return norm
|
|
|
|
|
|
def convert_pooling_module(pooling: PoolingModule) -> PoolingModuleWithProj:
|
|
assert isinstance(pooling, PoolingModule), type(pooling)
|
|
return PoolingModuleWithProj(proj=pooling.proj)
|
|
|
|
|
|
# Copied from https://pytorch.org/docs/1.9.0/_modules/torch/nn/modules/module.html#Module.get_submodule # noqa
|
|
# get_submodule was added to nn.Module at v1.9.0
|
|
def get_submodule(model, target):
|
|
if target == "":
|
|
return model
|
|
atoms: List[str] = target.split(".")
|
|
mod: torch.nn.Module = model
|
|
for item in atoms:
|
|
if not hasattr(mod, item):
|
|
raise AttributeError(
|
|
mod._get_name() + " has no " "attribute `" + item + "`"
|
|
)
|
|
mod = getattr(mod, item)
|
|
if not isinstance(mod, torch.nn.Module):
|
|
raise AttributeError("`" + item + "` is not " "an nn.Module")
|
|
return mod
|
|
|
|
|
|
def convert_scaled_to_non_scaled(
|
|
model: nn.Module,
|
|
inplace: bool = False,
|
|
is_pnnx: bool = False,
|
|
):
|
|
"""
|
|
Args:
|
|
model:
|
|
The model to be converted.
|
|
inplace:
|
|
If True, the input model is modified inplace.
|
|
If False, the input model is copied and we modify the copied version.
|
|
is_pnnx:
|
|
True if we are going to export the model for PNNX.
|
|
Return:
|
|
Return a model without scaled layers.
|
|
"""
|
|
if not inplace:
|
|
model = copy.deepcopy(model)
|
|
|
|
d = {}
|
|
for name, m in model.named_modules():
|
|
if isinstance(m, BasicNorm):
|
|
d[name] = convert_basic_norm(m)
|
|
elif isinstance(m, (ActivationBalancer, Whiten)):
|
|
d[name] = nn.Identity()
|
|
elif isinstance(m, PoolingModule) and is_pnnx:
|
|
d[name] = convert_pooling_module(m)
|
|
|
|
for k, v in d.items():
|
|
if "." in k:
|
|
parent, child = k.rsplit(".", maxsplit=1)
|
|
setattr(get_submodule(model, parent), child, v)
|
|
else:
|
|
setattr(model, k, v)
|
|
|
|
return model
|