2022-11-17 09:42:17 -05:00

196 lines
5.7 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import torch
from asr_datamodule import LibriSpeechAsrDataModule
from hubert_xlarge import HubertXlargeFineTuned
from icefall.utils import (
AttributeDict,
setup_logger,
store_transcripts,
write_error_stats,
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--exp-dir",
type=Path,
default="pruned_transducer_stateless6/exp/",
help="The experiment dir",
)
return parser
def decode_dataset(
dl: torch.utils.data.DataLoader,
hubert_model: HubertXlargeFineTuned,
params: AttributeDict,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
model:
The neural model.
Returns:
Return a dict, whose key is decoding method "ctc_greedy_search".
Its value is a list of tuples.
Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
results = []
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
# hyps is a list, every element is decode result of a sentence.
hyps = hubert_model.ctc_greedy_search(batch)
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
this_batch = []
assert len(hyps) == len(texts)
for cut_id, hyp_text, ref_text in zip(cut_ids, hyps, texts):
ref_words = ref_text.split()
hyp_words = hyp_text.split()
this_batch.append((cut_id, ref_words, hyp_words))
results["ctc_greedy_search"].extend(this_batch)
num_cuts += len(texts)
if batch_idx % 20 == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = params.res_dir / f"recogs-{test_set_name}-{key}.txt"
store_transcripts(filename=recog_path, texts=results)
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = params.res_dir / f"errs-{test_set_name}-{key}.txt"
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = params.res_dir / f"wer-summary-{test_set_name}.txt"
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
HubertXlargeFineTuned.add_arguments(parser)
args = parser.parse_args()
params = AttributeDict()
params.update(vars(args))
# reset some parameters needed by hubert.
params.update(HubertXlargeFineTuned.get_params())
params.res_dir = params.exp_dir / f"ctc_greedy_search-{params.teacher_model_id}"
setup_logger(f"{params.res_dir}/log/log-ctc_greedy_search")
logging.info("Decoding started")
logging.info(params)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
params.device = device
hubert_model = HubertXlargeFineTuned(params)
librispeech = LibriSpeechAsrDataModule(params)
test_clean_cuts = librispeech.test_clean_cuts()
test_other_cuts = librispeech.test_other_cuts()
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
test_sets = ["test-clean", "test-other"]
test_dl = [test_clean_dl, test_other_dl]
for test_set, test_dl in zip(test_sets, test_dl):
results_dict = decode_dataset(
dl=test_dl,
hubert_model=hubert_model,
params=params,
)
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
logging.info("Done!")
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__":
main()