mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
196 lines
5.7 KiB
Python
Executable File
196 lines
5.7 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
from typing import Dict, List, Tuple
|
|
|
|
import torch
|
|
from asr_datamodule import LibriSpeechAsrDataModule
|
|
from hubert_xlarge import HubertXlargeFineTuned
|
|
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
setup_logger,
|
|
store_transcripts,
|
|
write_error_stats,
|
|
)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=Path,
|
|
default="pruned_transducer_stateless6/exp/",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def decode_dataset(
|
|
dl: torch.utils.data.DataLoader,
|
|
hubert_model: HubertXlargeFineTuned,
|
|
params: AttributeDict,
|
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
|
"""Decode dataset.
|
|
|
|
Args:
|
|
dl:
|
|
PyTorch's dataloader containing the dataset to decode.
|
|
model:
|
|
The neural model.
|
|
|
|
Returns:
|
|
Return a dict, whose key is decoding method "ctc_greedy_search".
|
|
Its value is a list of tuples.
|
|
Each tuple contains two elements:
|
|
The first is the reference transcript, and the second is the
|
|
predicted result.
|
|
"""
|
|
results = []
|
|
|
|
num_cuts = 0
|
|
|
|
try:
|
|
num_batches = len(dl)
|
|
except TypeError:
|
|
num_batches = "?"
|
|
|
|
results = defaultdict(list)
|
|
for batch_idx, batch in enumerate(dl):
|
|
# hyps is a list, every element is decode result of a sentence.
|
|
hyps = hubert_model.ctc_greedy_search(batch)
|
|
|
|
texts = batch["supervisions"]["text"]
|
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
|
this_batch = []
|
|
assert len(hyps) == len(texts)
|
|
for cut_id, hyp_text, ref_text in zip(cut_ids, hyps, texts):
|
|
ref_words = ref_text.split()
|
|
hyp_words = hyp_text.split()
|
|
this_batch.append((cut_id, ref_words, hyp_words))
|
|
results["ctc_greedy_search"].extend(this_batch)
|
|
|
|
num_cuts += len(texts)
|
|
|
|
if batch_idx % 20 == 0:
|
|
batch_str = f"{batch_idx}/{num_batches}"
|
|
|
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
|
return results
|
|
|
|
|
|
def save_results(
|
|
params: AttributeDict,
|
|
test_set_name: str,
|
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
|
):
|
|
test_set_wers = dict()
|
|
for key, results in results_dict.items():
|
|
recog_path = params.res_dir / f"recogs-{test_set_name}-{key}.txt"
|
|
store_transcripts(filename=recog_path, texts=results)
|
|
|
|
# The following prints out WERs, per-word error statistics and aligned
|
|
# ref/hyp pairs.
|
|
errs_filename = params.res_dir / f"errs-{test_set_name}-{key}.txt"
|
|
with open(errs_filename, "w") as f:
|
|
wer = write_error_stats(
|
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
|
)
|
|
test_set_wers[key] = wer
|
|
|
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
|
|
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
errs_info = params.res_dir / f"wer-summary-{test_set_name}.txt"
|
|
with open(errs_info, "w") as f:
|
|
print("settings\tWER", file=f)
|
|
for key, val in test_set_wers:
|
|
print("{}\t{}".format(key, val), file=f)
|
|
|
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
|
note = "\tbest for {}".format(test_set_name)
|
|
for key, val in test_set_wers:
|
|
s += "{}\t{}{}\n".format(key, val, note)
|
|
note = ""
|
|
logging.info(s)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
|
HubertXlargeFineTuned.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
|
|
params = AttributeDict()
|
|
params.update(vars(args))
|
|
# reset some parameters needed by hubert.
|
|
params.update(HubertXlargeFineTuned.get_params())
|
|
|
|
params.res_dir = params.exp_dir / f"ctc_greedy_search-{params.teacher_model_id}"
|
|
|
|
setup_logger(f"{params.res_dir}/log/log-ctc_greedy_search")
|
|
logging.info("Decoding started")
|
|
logging.info(params)
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
params.device = device
|
|
|
|
hubert_model = HubertXlargeFineTuned(params)
|
|
|
|
librispeech = LibriSpeechAsrDataModule(params)
|
|
|
|
test_clean_cuts = librispeech.test_clean_cuts()
|
|
test_other_cuts = librispeech.test_other_cuts()
|
|
|
|
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
|
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
|
|
|
test_sets = ["test-clean", "test-other"]
|
|
test_dl = [test_clean_dl, test_other_dl]
|
|
|
|
for test_set, test_dl in zip(test_sets, test_dl):
|
|
results_dict = decode_dataset(
|
|
dl=test_dl,
|
|
hubert_model=hubert_model,
|
|
params=params,
|
|
)
|
|
|
|
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|