198 lines
5.5 KiB
Python
Executable File

#!/usr/bin/env python3
#
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script converts several saved checkpoints
# to a single one using model averaging.
"""
Usage:
./pruned_transducer_stateless/export.py \
--exp-dir ./pruned_transducer_stateless/exp \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 20 \
--avg 10
It will generate a file exp_dir/pretrained.pt
To use the generated file with `pruned_transducer_stateless/decode.py`,
you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/librispeech/ASR
./pruned_transducer_stateless/decode.py \
--exp-dir ./pruned_transducer_stateless/exp \
--epoch 9999 \
--avg 1 \
--max-duration 100 \
--bpe-model data/lang_bpe_500/bpe.model
"""
import argparse
import logging
from pathlib import Path
import k2
import torch
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.utils import num_tokens, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--tokens",
type=str,
default="data/lang_bpe_500/tokens.txt",
help="Path to the tokens.txt.",
)
parser.add_argument(
"--jit",
type=str2bool,
default=False,
help="""True to save a model after applying torch.jit.script.
""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--streaming-model",
type=str2bool,
default=False,
help="""Whether to export a streaming model, if the models in exp-dir
are streaming model, this should be True.
""",
)
add_model_arguments(parser)
return parser
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
# Load tokens.txt here
token_table = k2.SymbolTable.from_file(params.tokens)
# Load id of the <blk> token and the vocab size, <blk> is
# defined in local/train_bpe_model.py
params.blank_id = token_table["<blk>"]
params.vocab_size = num_tokens(token_table) + 1 # +1 for <blk>
if params.streaming_model:
assert params.causal_convolution
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
model.to(device)
if params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
model.eval()
model.to("cpu")
model.eval()
if params.jit:
# We won't use the forward() method of the model in C++, so just ignore
# it here.
# Otherwise, one of its arguments is a ragged tensor and is not
# torch scriptabe.
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
logging.info("Using torch.jit.script")
model = torch.jit.script(model)
filename = params.exp_dir / "cpu_jit.pt"
model.save(str(filename))
logging.info(f"Saved to {filename}")
else:
logging.info("Not using torch.jit.script")
# Save it using a format so that it can be loaded
# by :func:`load_checkpoint`
filename = params.exp_dir / "pretrained.pt"
torch.save({"model": model.state_dict()}, str(filename))
logging.info(f"Saved to {filename}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()