2022-11-17 09:42:17 -05:00

147 lines
5.1 KiB
Python

# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Tuple
import k2
import torch
from beam_search import Hypothesis, HypothesisList
from icefall.utils import AttributeDict
class Stream(object):
def __init__(
self,
params: AttributeDict,
cut_id: str,
decoding_graph: Optional[k2.Fsa] = None,
device: torch.device = torch.device("cpu"),
LOG_EPS: float = math.log(1e-10),
) -> None:
"""
Args:
params:
It's the return value of :func:`get_params`.
cut_id:
The cut id of the current stream.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search.
device:
The device to run this stream.
LOG_EPS:
A float value used for padding.
"""
self.LOG_EPS = LOG_EPS
self.cut_id = cut_id
# Containing attention caches and convolution caches
self.states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
# It uses different attributes for different decoding methods.
self.context_size = params.context_size
self.decoding_method = params.decoding_method
if params.decoding_method == "greedy_search":
self.hyp = [params.blank_id] * params.context_size
elif params.decoding_method == "modified_beam_search":
self.hyps = HypothesisList()
self.hyps.add(
Hypothesis(
ys=[params.blank_id] * params.context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
)
)
elif params.decoding_method == "fast_beam_search":
# feature_len is needed to get partial results.
# The rnnt_decoding_stream for fast_beam_search.
self.rnnt_decoding_stream: k2.RnntDecodingStream = k2.RnntDecodingStream(
decoding_graph
)
self.hyp: Optional[List[int]] = None
else:
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
self.ground_truth: str = ""
self.feature: Optional[torch.Tensor] = None
# Make sure all feature frames can be used.
# We aim to obtain 1 frame after subsampling.
self.chunk_length = params.subsampling_factor
self.pad_length = 5
self.num_frames = 0
self.num_processed_frames = 0
# After all feature frames are processed, we set this flag to True
self._done = False
def set_feature(self, feature: torch.Tensor) -> None:
assert feature.dim() == 2, feature.dim()
# tail padding here to alleviate the tail deletion problem
num_tail_padded_frames = 35
self.num_frames = feature.size(0) + num_tail_padded_frames
self.feature = torch.nn.functional.pad(
feature,
(0, 0, 0, self.pad_length + num_tail_padded_frames),
mode="constant",
value=self.LOG_EPS,
)
def get_feature_chunk(self) -> torch.Tensor:
"""Get a chunk of feature frames.
Returns:
A tensor of shape (ret_length, feature_dim).
"""
update_length = min(
self.num_frames - self.num_processed_frames, self.chunk_length
)
ret_length = update_length + self.pad_length
ret_feature = self.feature[
self.num_processed_frames : self.num_processed_frames + ret_length
]
# Cut off used frames.
# self.feature = self.feature[update_length:]
self.num_processed_frames += update_length
if self.num_processed_frames >= self.num_frames:
self._done = True
return ret_feature
@property
def id(self) -> str:
return self.cut_id
@property
def done(self) -> bool:
"""Return True if all feature frames are processed."""
return self._done
def decoding_result(self) -> List[int]:
"""Obtain current decoding result."""
if self.decoding_method == "greedy_search":
return self.hyp[self.context_size :]
elif self.decoding_method == "modified_beam_search":
best_hyp = self.hyps.get_most_probable(length_norm=True)
return best_hyp.ys[self.context_size :]
else:
assert self.decoding_method == "fast_beam_search"
return self.hyp