mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
147 lines
5.1 KiB
Python
147 lines
5.1 KiB
Python
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang,
|
|
# Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import math
|
|
from typing import List, Optional, Tuple
|
|
|
|
import k2
|
|
import torch
|
|
from beam_search import Hypothesis, HypothesisList
|
|
|
|
from icefall.utils import AttributeDict
|
|
|
|
|
|
class Stream(object):
|
|
def __init__(
|
|
self,
|
|
params: AttributeDict,
|
|
cut_id: str,
|
|
decoding_graph: Optional[k2.Fsa] = None,
|
|
device: torch.device = torch.device("cpu"),
|
|
LOG_EPS: float = math.log(1e-10),
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
params:
|
|
It's the return value of :func:`get_params`.
|
|
cut_id:
|
|
The cut id of the current stream.
|
|
decoding_graph:
|
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
|
only when --decoding_method is fast_beam_search.
|
|
device:
|
|
The device to run this stream.
|
|
LOG_EPS:
|
|
A float value used for padding.
|
|
"""
|
|
self.LOG_EPS = LOG_EPS
|
|
self.cut_id = cut_id
|
|
|
|
# Containing attention caches and convolution caches
|
|
self.states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
|
|
|
|
# It uses different attributes for different decoding methods.
|
|
self.context_size = params.context_size
|
|
self.decoding_method = params.decoding_method
|
|
if params.decoding_method == "greedy_search":
|
|
self.hyp = [params.blank_id] * params.context_size
|
|
elif params.decoding_method == "modified_beam_search":
|
|
self.hyps = HypothesisList()
|
|
self.hyps.add(
|
|
Hypothesis(
|
|
ys=[params.blank_id] * params.context_size,
|
|
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
|
)
|
|
)
|
|
elif params.decoding_method == "fast_beam_search":
|
|
# feature_len is needed to get partial results.
|
|
# The rnnt_decoding_stream for fast_beam_search.
|
|
self.rnnt_decoding_stream: k2.RnntDecodingStream = k2.RnntDecodingStream(
|
|
decoding_graph
|
|
)
|
|
self.hyp: Optional[List[int]] = None
|
|
else:
|
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
|
|
|
self.ground_truth: str = ""
|
|
|
|
self.feature: Optional[torch.Tensor] = None
|
|
# Make sure all feature frames can be used.
|
|
# We aim to obtain 1 frame after subsampling.
|
|
self.chunk_length = params.subsampling_factor
|
|
self.pad_length = 5
|
|
self.num_frames = 0
|
|
self.num_processed_frames = 0
|
|
|
|
# After all feature frames are processed, we set this flag to True
|
|
self._done = False
|
|
|
|
def set_feature(self, feature: torch.Tensor) -> None:
|
|
assert feature.dim() == 2, feature.dim()
|
|
# tail padding here to alleviate the tail deletion problem
|
|
num_tail_padded_frames = 35
|
|
self.num_frames = feature.size(0) + num_tail_padded_frames
|
|
self.feature = torch.nn.functional.pad(
|
|
feature,
|
|
(0, 0, 0, self.pad_length + num_tail_padded_frames),
|
|
mode="constant",
|
|
value=self.LOG_EPS,
|
|
)
|
|
|
|
def get_feature_chunk(self) -> torch.Tensor:
|
|
"""Get a chunk of feature frames.
|
|
|
|
Returns:
|
|
A tensor of shape (ret_length, feature_dim).
|
|
"""
|
|
update_length = min(
|
|
self.num_frames - self.num_processed_frames, self.chunk_length
|
|
)
|
|
ret_length = update_length + self.pad_length
|
|
|
|
ret_feature = self.feature[
|
|
self.num_processed_frames : self.num_processed_frames + ret_length
|
|
]
|
|
# Cut off used frames.
|
|
# self.feature = self.feature[update_length:]
|
|
|
|
self.num_processed_frames += update_length
|
|
if self.num_processed_frames >= self.num_frames:
|
|
self._done = True
|
|
|
|
return ret_feature
|
|
|
|
@property
|
|
def id(self) -> str:
|
|
return self.cut_id
|
|
|
|
@property
|
|
def done(self) -> bool:
|
|
"""Return True if all feature frames are processed."""
|
|
return self._done
|
|
|
|
def decoding_result(self) -> List[int]:
|
|
"""Obtain current decoding result."""
|
|
if self.decoding_method == "greedy_search":
|
|
return self.hyp[self.context_size :]
|
|
elif self.decoding_method == "modified_beam_search":
|
|
best_hyp = self.hyps.get_most_probable(length_norm=True)
|
|
return best_hyp.ys[self.context_size :]
|
|
else:
|
|
assert self.decoding_method == "fast_beam_search"
|
|
return self.hyp
|