2022-11-17 09:42:17 -05:00

868 lines
30 KiB
Python

# Copyright 2022 Xiaomi Corp. (authors: Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import math
from typing import List, Optional, Tuple
import torch
from encoder_interface import EncoderInterface
from scaling import (
ActivationBalancer,
BasicNorm,
DoubleSwish,
ScaledConv2d,
ScaledLinear,
ScaledLSTM,
)
from torch import nn
LOG_EPSILON = math.log(1e-10)
def unstack_states(
states: Tuple[torch.Tensor, torch.Tensor]
) -> List[Tuple[torch.Tensor, torch.Tensor]]:
"""
Unstack the lstm states corresponding to a batch of utterances into a list
of states, where the i-th entry is the state from the i-th utterance.
Args:
states:
A tuple of 2 elements.
``states[0]`` is the lstm hidden states, of a batch of utterance.
``states[1]`` is the lstm cell states, of a batch of utterances.
Returns:
A list of states.
``states[i]`` is a tuple of 2 elememts of i-th utterance.
``states[i][0]`` is the lstm hidden states of i-th utterance.
``states[i][1]`` is the lstm cell states of i-th utterance.
"""
hidden_states, cell_states = states
list_hidden_states = hidden_states.unbind(dim=1)
list_cell_states = cell_states.unbind(dim=1)
ans = [
(h.unsqueeze(1), c.unsqueeze(1))
for (h, c) in zip(list_hidden_states, list_cell_states)
]
return ans
def stack_states(
states_list: List[Tuple[torch.Tensor, torch.Tensor]]
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Stack list of lstm states corresponding to separate utterances into a single
lstm state so that it can be used as an input for lstm when those utterances
are formed into a batch.
Args:
state_list:
Each element in state_list corresponds to the lstm state for a single
utterance.
``states[i]`` is a tuple of 2 elememts of i-th utterance.
``states[i][0]`` is the lstm hidden states of i-th utterance.
``states[i][1]`` is the lstm cell states of i-th utterance.
Returns:
A new state corresponding to a batch of utterances.
It is a tuple of 2 elements.
``states[0]`` is the lstm hidden states, of a batch of utterance.
``states[1]`` is the lstm cell states, of a batch of utterances.
"""
hidden_states = torch.cat([s[0] for s in states_list], dim=1)
cell_states = torch.cat([s[1] for s in states_list], dim=1)
ans = (hidden_states, cell_states)
return ans
class RNN(EncoderInterface):
"""
Args:
num_features (int):
Number of input features.
subsampling_factor (int):
Subsampling factor of encoder (convolution layers before lstm layers) (default=4). # noqa
d_model (int):
Output dimension (default=512).
dim_feedforward (int):
Feedforward dimension (default=2048).
rnn_hidden_size (int):
Hidden dimension for lstm layers (default=1024).
num_encoder_layers (int):
Number of encoder layers (default=12).
dropout (float):
Dropout rate (default=0.1).
layer_dropout (float):
Dropout value for model-level warmup (default=0.075).
aux_layer_period (int):
Period of auxiliary layers used for random combiner during training.
If set to 0, will not use the random combiner (Default).
You can set a positive integer to use the random combiner, e.g., 3.
is_pnnx:
True to make this class exportable via PNNX.
"""
def __init__(
self,
num_features: int,
subsampling_factor: int = 4,
d_model: int = 512,
dim_feedforward: int = 2048,
rnn_hidden_size: int = 1024,
num_encoder_layers: int = 12,
dropout: float = 0.1,
layer_dropout: float = 0.075,
aux_layer_period: int = 0,
is_pnnx: bool = False,
) -> None:
super(RNN, self).__init__()
self.num_features = num_features
self.subsampling_factor = subsampling_factor
if subsampling_factor != 4:
raise NotImplementedError("Support only 'subsampling_factor=4'.")
# self.encoder_embed converts the input of shape (N, T, num_features)
# to the shape (N, T//subsampling_factor, d_model).
# That is, it does two things simultaneously:
# (1) subsampling: T -> T//subsampling_factor
# (2) embedding: num_features -> d_model
self.encoder_embed = Conv2dSubsampling(
num_features,
d_model,
is_pnnx=is_pnnx,
)
self.is_pnnx = is_pnnx
self.num_encoder_layers = num_encoder_layers
self.d_model = d_model
self.rnn_hidden_size = rnn_hidden_size
encoder_layer = RNNEncoderLayer(
d_model=d_model,
dim_feedforward=dim_feedforward,
rnn_hidden_size=rnn_hidden_size,
dropout=dropout,
layer_dropout=layer_dropout,
)
self.encoder = RNNEncoder(
encoder_layer,
num_encoder_layers,
aux_layers=list(
range(
num_encoder_layers // 3,
num_encoder_layers - 1,
aux_layer_period,
)
)
if aux_layer_period > 0
else None,
)
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
warmup: float = 1.0,
) -> Tuple[torch.Tensor, torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Args:
x:
The input tensor. Its shape is (N, T, C), where N is the batch size,
T is the sequence length, C is the feature dimension.
x_lens:
A tensor of shape (N,), containing the number of frames in `x`
before padding.
states:
A tuple of 2 tensors (optional). It is for streaming inference.
states[0] is the hidden states of all layers,
with shape of (num_layers, N, d_model);
states[1] is the cell states of all layers,
with shape of (num_layers, N, rnn_hidden_size).
warmup:
A floating point value that gradually increases from 0 throughout
training; when it is >= 1.0 we are "fully warmed up". It is used
to turn modules on sequentially.
Returns:
A tuple of 3 tensors:
- embeddings: its shape is (N, T', d_model), where T' is the output
sequence lengths.
- lengths: a tensor of shape (batch_size,) containing the number of
frames in `embeddings` before padding.
- updated states, whose shape is the same as the input states.
"""
x = self.encoder_embed(x)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
# lengths = ((x_lens - 3) // 2 - 1) // 2 # issue an warning
#
# Note: rounding_mode in torch.div() is available only in torch >= 1.8.0
if not self.is_pnnx:
lengths = (((x_lens - 3) >> 1) - 1) >> 1
else:
lengths1 = torch.floor((x_lens - 3) / 2)
lengths = torch.floor((lengths1 - 1) / 2)
lengths = lengths.to(x_lens)
if not torch.jit.is_tracing():
assert x.size(0) == lengths.max().item()
if states is None:
x = self.encoder(x, warmup=warmup)[0]
# torch.jit.trace requires returned types to be the same as annotated # noqa
new_states = (torch.empty(0), torch.empty(0))
else:
assert not self.training
assert len(states) == 2
if not torch.jit.is_tracing():
# for hidden state
assert states[0].shape == (
self.num_encoder_layers,
x.size(1),
self.d_model,
)
# for cell state
assert states[1].shape == (
self.num_encoder_layers,
x.size(1),
self.rnn_hidden_size,
)
x, new_states = self.encoder(x, states)
x = x.permute(1, 0, 2) # (T, N, C) -> (N, T, C)
return x, lengths, new_states
@torch.jit.export
def get_init_states(
self, batch_size: int = 1, device: torch.device = torch.device("cpu")
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Get model initial states."""
# for rnn hidden states
hidden_states = torch.zeros(
(self.num_encoder_layers, batch_size, self.d_model), device=device
)
cell_states = torch.zeros(
(self.num_encoder_layers, batch_size, self.rnn_hidden_size),
device=device,
)
return (hidden_states, cell_states)
class RNNEncoderLayer(nn.Module):
"""
RNNEncoderLayer is made up of lstm and feedforward networks.
Args:
d_model:
The number of expected features in the input (required).
dim_feedforward:
The dimension of feedforward network model (default=2048).
rnn_hidden_size:
The hidden dimension of rnn layer.
dropout:
The dropout value (default=0.1).
layer_dropout:
The dropout value for model-level warmup (default=0.075).
"""
def __init__(
self,
d_model: int,
dim_feedforward: int,
rnn_hidden_size: int,
dropout: float = 0.1,
layer_dropout: float = 0.075,
) -> None:
super(RNNEncoderLayer, self).__init__()
self.layer_dropout = layer_dropout
self.d_model = d_model
self.rnn_hidden_size = rnn_hidden_size
assert rnn_hidden_size >= d_model, (rnn_hidden_size, d_model)
self.lstm = ScaledLSTM(
input_size=d_model,
hidden_size=rnn_hidden_size,
proj_size=d_model if rnn_hidden_size > d_model else 0,
num_layers=1,
dropout=0.0,
)
self.feed_forward = nn.Sequential(
ScaledLinear(d_model, dim_feedforward),
ActivationBalancer(channel_dim=-1),
DoubleSwish(),
nn.Dropout(dropout),
ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
)
self.norm_final = BasicNorm(d_model)
# try to ensure the output is close to zero-mean (or at least, zero-median). # noqa
self.balancer = ActivationBalancer(
channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0
)
self.dropout = nn.Dropout(dropout)
def forward(
self,
src: torch.Tensor,
states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
warmup: float = 1.0,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Pass the input through the encoder layer.
Args:
src:
The sequence to the encoder layer (required).
Its shape is (S, N, E), where S is the sequence length,
N is the batch size, and E is the feature number.
states:
A tuple of 2 tensors (optional). It is for streaming inference.
states[0] is the hidden states of all layers,
with shape of (1, N, d_model);
states[1] is the cell states of all layers,
with shape of (1, N, rnn_hidden_size).
warmup:
It controls selective bypass of of layers; if < 1.0, we will
bypass layers more frequently.
"""
src_orig = src
warmup_scale = min(0.1 + warmup, 1.0)
# alpha = 1.0 means fully use this encoder layer, 0.0 would mean
# completely bypass it.
if self.training:
alpha = (
warmup_scale
if torch.rand(()).item() <= (1.0 - self.layer_dropout)
else 0.1
)
else:
alpha = 1.0
# lstm module
if states is None:
src_lstm = self.lstm(src)[0]
# torch.jit.trace requires returned types be the same as annotated
new_states = (torch.empty(0), torch.empty(0))
else:
assert not self.training
assert len(states) == 2
if not torch.jit.is_tracing():
# for hidden state
assert states[0].shape == (1, src.size(1), self.d_model)
# for cell state
assert states[1].shape == (1, src.size(1), self.rnn_hidden_size)
src_lstm, new_states = self.lstm(src, states)
src = self.dropout(src_lstm) + src
# feed forward module
src = src + self.dropout(self.feed_forward(src))
src = self.norm_final(self.balancer(src))
if alpha != 1.0:
src = alpha * src + (1 - alpha) * src_orig
return src, new_states
class RNNEncoder(nn.Module):
"""
RNNEncoder is a stack of N encoder layers.
Args:
encoder_layer:
An instance of the RNNEncoderLayer() class (required).
num_layers:
The number of sub-encoder-layers in the encoder (required).
"""
def __init__(
self,
encoder_layer: nn.Module,
num_layers: int,
aux_layers: Optional[List[int]] = None,
) -> None:
super(RNNEncoder, self).__init__()
self.layers = nn.ModuleList(
[copy.deepcopy(encoder_layer) for i in range(num_layers)]
)
self.num_layers = num_layers
self.d_model = encoder_layer.d_model
self.rnn_hidden_size = encoder_layer.rnn_hidden_size
self.aux_layers: List[int] = []
self.combiner: Optional[nn.Module] = None
if aux_layers is not None:
assert len(set(aux_layers)) == len(aux_layers)
assert num_layers - 1 not in aux_layers
self.aux_layers = aux_layers + [num_layers - 1]
self.combiner = RandomCombine(
num_inputs=len(self.aux_layers),
final_weight=0.5,
pure_prob=0.333,
stddev=2.0,
)
def forward(
self,
src: torch.Tensor,
states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
warmup: float = 1.0,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Pass the input through the encoder layer in turn.
Args:
src:
The sequence to the encoder layer (required).
Its shape is (S, N, E), where S is the sequence length,
N is the batch size, and E is the feature number.
states:
A tuple of 2 tensors (optional). It is for streaming inference.
states[0] is the hidden states of all layers,
with shape of (num_layers, N, d_model);
states[1] is the cell states of all layers,
with shape of (num_layers, N, rnn_hidden_size).
warmup:
It controls selective bypass of of layers; if < 1.0, we will
bypass layers more frequently.
"""
if states is not None:
assert not self.training
assert len(states) == 2
if not torch.jit.is_tracing():
# for hidden state
assert states[0].shape == (
self.num_layers,
src.size(1),
self.d_model,
)
# for cell state
assert states[1].shape == (
self.num_layers,
src.size(1),
self.rnn_hidden_size,
)
output = src
outputs = []
new_hidden_states = []
new_cell_states = []
for i, mod in enumerate(self.layers):
if states is None:
output = mod(output, warmup=warmup)[0]
else:
layer_state = (
states[0][i : i + 1, :, :], # h: (1, N, d_model)
states[1][i : i + 1, :, :], # c: (1, N, rnn_hidden_size)
)
output, (h, c) = mod(output, layer_state)
new_hidden_states.append(h)
new_cell_states.append(c)
if self.combiner is not None and i in self.aux_layers:
outputs.append(output)
if self.combiner is not None:
output = self.combiner(outputs)
if states is None:
new_states = (torch.empty(0), torch.empty(0))
else:
new_states = (
torch.cat(new_hidden_states, dim=0),
torch.cat(new_cell_states, dim=0),
)
return output, new_states
class Conv2dSubsampling(nn.Module):
"""Convolutional 2D subsampling (to 1/4 length).
Convert an input of shape (N, T, idim) to an output
with shape (N, T', odim), where
T' = ((T-3)//2-1)//2, which approximates T' == T//4
It is based on
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa
"""
def __init__(
self,
in_channels: int,
out_channels: int,
layer1_channels: int = 8,
layer2_channels: int = 32,
layer3_channels: int = 128,
is_pnnx: bool = False,
) -> None:
"""
Args:
in_channels:
Number of channels in. The input shape is (N, T, in_channels).
Caution: It requires: T >= 9, in_channels >= 9.
out_channels
Output dim. The output shape is (N, ((T-3)//2-1)//2, out_channels)
layer1_channels:
Number of channels in layer1
layer1_channels:
Number of channels in layer2
is_pnnx:
True if we are converting the model to PNNX format.
False otherwise.
"""
assert in_channels >= 9
super().__init__()
self.conv = nn.Sequential(
ScaledConv2d(
in_channels=1,
out_channels=layer1_channels,
kernel_size=3,
padding=0,
),
ActivationBalancer(channel_dim=1),
DoubleSwish(),
ScaledConv2d(
in_channels=layer1_channels,
out_channels=layer2_channels,
kernel_size=3,
stride=2,
),
ActivationBalancer(channel_dim=1),
DoubleSwish(),
ScaledConv2d(
in_channels=layer2_channels,
out_channels=layer3_channels,
kernel_size=3,
stride=2,
),
ActivationBalancer(channel_dim=1),
DoubleSwish(),
)
self.out = ScaledLinear(
layer3_channels * (((in_channels - 3) // 2 - 1) // 2), out_channels
)
# set learn_eps=False because out_norm is preceded by `out`, and `out`
# itself has learned scale, so the extra degree of freedom is not
# needed.
self.out_norm = BasicNorm(out_channels, learn_eps=False)
# constrain median of output to be close to zero.
self.out_balancer = ActivationBalancer(
channel_dim=-1, min_positive=0.45, max_positive=0.55
)
# ncnn supports only batch size == 1
self.is_pnnx = is_pnnx
self.conv_out_dim = self.out.weight.shape[1]
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Subsample x.
Args:
x:
Its shape is (N, T, idim).
Returns:
Return a tensor of shape (N, ((T-3)//2-1)//2, odim)
"""
# On entry, x is (N, T, idim)
x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W)
x = self.conv(x)
if torch.jit.is_tracing() and self.is_pnnx:
x = x.permute(0, 2, 1, 3).reshape(1, -1, self.conv_out_dim)
x = self.out(x)
else:
# Now x is of shape (N, odim, ((T-3)//2-1)//2, ((idim-3)//2-1)//2)
b, c, t, f = x.size()
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
# Now x is of shape (N, ((T-3)//2-1))//2, odim)
x = self.out_norm(x)
x = self.out_balancer(x)
return x
class RandomCombine(nn.Module):
"""
This module combines a list of Tensors, all with the same shape, to
produce a single output of that same shape which, in training time,
is a random combination of all the inputs; but which in test time
will be just the last input.
The idea is that the list of Tensors will be a list of outputs of multiple
conformer layers. This has a similar effect as iterated loss. (See:
DEJA-VU: DOUBLE FEATURE PRESENTATION AND ITERATED LOSS IN DEEP TRANSFORMER
NETWORKS).
"""
def __init__(
self,
num_inputs: int,
final_weight: float = 0.5,
pure_prob: float = 0.5,
stddev: float = 2.0,
) -> None:
"""
Args:
num_inputs:
The number of tensor inputs, which equals the number of layers'
outputs that are fed into this module. E.g. in an 18-layer neural
net if we output layers 16, 12, 18, num_inputs would be 3.
final_weight:
The amount of weight or probability we assign to the
final layer when randomly choosing layers or when choosing
continuous layer weights.
pure_prob:
The probability, on each frame, with which we choose
only a single layer to output (rather than an interpolation)
stddev:
A standard deviation that we add to log-probs for computing
randomized weights.
The method of choosing which layers, or combinations of layers, to use,
is conceptually as follows::
With probability `pure_prob`::
With probability `final_weight`: choose final layer,
Else: choose random non-final layer.
Else::
Choose initial log-weights that correspond to assigning
weight `final_weight` to the final layer and equal
weights to other layers; then add Gaussian noise
with variance `stddev` to these log-weights, and normalize
to weights (note: the average weight assigned to the
final layer here will not be `final_weight` if stddev>0).
"""
super().__init__()
assert 0 <= pure_prob <= 1, pure_prob
assert 0 < final_weight < 1, final_weight
assert num_inputs >= 1
self.num_inputs = num_inputs
self.final_weight = final_weight
self.pure_prob = pure_prob
self.stddev = stddev
self.final_log_weight = (
torch.tensor((final_weight / (1 - final_weight)) * (self.num_inputs - 1))
.log()
.item()
)
def forward(self, inputs: List[torch.Tensor]) -> torch.Tensor:
"""Forward function.
Args:
inputs:
A list of Tensor, e.g. from various layers of a transformer.
All must be the same shape, of (*, num_channels)
Returns:
A Tensor of shape (*, num_channels). In test mode
this is just the final input.
"""
num_inputs = self.num_inputs
assert len(inputs) == num_inputs
if not self.training or torch.jit.is_scripting():
return inputs[-1]
# Shape of weights: (*, num_inputs)
num_channels = inputs[0].shape[-1]
num_frames = inputs[0].numel() // num_channels
ndim = inputs[0].ndim
# stacked_inputs: (num_frames, num_channels, num_inputs)
stacked_inputs = torch.stack(inputs, dim=ndim).reshape(
(num_frames, num_channels, num_inputs)
)
# weights: (num_frames, num_inputs)
weights = self._get_random_weights(
inputs[0].dtype, inputs[0].device, num_frames
)
weights = weights.reshape(num_frames, num_inputs, 1)
# ans: (num_frames, num_channels, 1)
ans = torch.matmul(stacked_inputs, weights)
# ans: (*, num_channels)
ans = ans.reshape(inputs[0].shape[:-1] + (num_channels,))
# The following if causes errors for torch script in torch 1.6.0
# if __name__ == "__main__":
# # for testing only...
# print("Weights = ", weights.reshape(num_frames, num_inputs))
return ans
def _get_random_weights(
self, dtype: torch.dtype, device: torch.device, num_frames: int
) -> torch.Tensor:
"""Return a tensor of random weights, of shape
`(num_frames, self.num_inputs)`,
Args:
dtype:
The data-type desired for the answer, e.g. float, double.
device:
The device needed for the answer.
num_frames:
The number of sets of weights desired
Returns:
A tensor of shape (num_frames, self.num_inputs), such that
`ans.sum(dim=1)` is all ones.
"""
pure_prob = self.pure_prob
if pure_prob == 0.0:
return self._get_random_mixed_weights(dtype, device, num_frames)
elif pure_prob == 1.0:
return self._get_random_pure_weights(dtype, device, num_frames)
else:
p = self._get_random_pure_weights(dtype, device, num_frames)
m = self._get_random_mixed_weights(dtype, device, num_frames)
return torch.where(
torch.rand(num_frames, 1, device=device) < self.pure_prob, p, m
)
def _get_random_pure_weights(
self, dtype: torch.dtype, device: torch.device, num_frames: int
):
"""Return a tensor of random one-hot weights, of shape
`(num_frames, self.num_inputs)`,
Args:
dtype:
The data-type desired for the answer, e.g. float, double.
device:
The device needed for the answer.
num_frames:
The number of sets of weights desired.
Returns:
A one-hot tensor of shape `(num_frames, self.num_inputs)`, with
exactly one weight equal to 1.0 on each frame.
"""
final_prob = self.final_weight
# final contains self.num_inputs - 1 in all elements
final = torch.full((num_frames,), self.num_inputs - 1, device=device)
# nonfinal contains random integers in [0..num_inputs - 2], these are for non-final weights. # noqa
nonfinal = torch.randint(self.num_inputs - 1, (num_frames,), device=device)
indexes = torch.where(
torch.rand(num_frames, device=device) < final_prob, final, nonfinal
)
ans = torch.nn.functional.one_hot(indexes, num_classes=self.num_inputs).to(
dtype=dtype
)
return ans
def _get_random_mixed_weights(
self, dtype: torch.dtype, device: torch.device, num_frames: int
):
"""Return a tensor of random one-hot weights, of shape
`(num_frames, self.num_inputs)`,
Args:
dtype:
The data-type desired for the answer, e.g. float, double.
device:
The device needed for the answer.
num_frames:
The number of sets of weights desired.
Returns:
A tensor of shape (num_frames, self.num_inputs), which elements
in [0..1] that sum to one over the second axis, i.e.
`ans.sum(dim=1)` is all ones.
"""
logprobs = (
torch.randn(num_frames, self.num_inputs, dtype=dtype, device=device)
* self.stddev # noqa
)
logprobs[:, -1] += self.final_log_weight
return logprobs.softmax(dim=1)
def _test_random_combine(final_weight: float, pure_prob: float, stddev: float):
print(
f"_test_random_combine: final_weight={final_weight}, pure_prob={pure_prob}, stddev={stddev}" # noqa
)
num_inputs = 3
num_channels = 50
m = RandomCombine(
num_inputs=num_inputs,
final_weight=final_weight,
pure_prob=pure_prob,
stddev=stddev,
)
x = [torch.ones(3, 4, num_channels) for _ in range(num_inputs)]
y = m(x)
assert y.shape == x[0].shape
assert torch.allclose(y, x[0]) # .. since actually all ones.
def _test_random_combine_main():
_test_random_combine(0.999, 0, 0.0)
_test_random_combine(0.5, 0, 0.0)
_test_random_combine(0.999, 0, 0.0)
_test_random_combine(0.5, 0, 0.3)
_test_random_combine(0.5, 1, 0.3)
_test_random_combine(0.5, 0.5, 0.3)
feature_dim = 50
c = RNN(num_features=feature_dim, d_model=128)
batch_size = 5
seq_len = 20
# Just make sure the forward pass runs.
f = c(
torch.randn(batch_size, seq_len, feature_dim),
torch.full((batch_size,), seq_len, dtype=torch.int64),
)
f # to remove flake8 warnings
if __name__ == "__main__":
feature_dim = 80
m = RNN(
num_features=feature_dim,
d_model=512,
rnn_hidden_size=1024,
dim_feedforward=2048,
num_encoder_layers=12,
)
batch_size = 5
seq_len = 20
# Just make sure the forward pass runs.
f = m(
torch.randn(batch_size, seq_len, feature_dim),
torch.full((batch_size,), seq_len, dtype=torch.int64),
warmup=0.5,
)
num_param = sum([p.numel() for p in m.parameters()])
print(f"Number of model parameters: {num_param}")
_test_random_combine_main()