icefall/egs/librispeech/ASR/local/compile_hlg_using_openfst.py

194 lines
5.7 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input lang_dir and generates HLG from
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
- L, the lexicon, built from lang_dir/L_disambig.fst
Caution: We use a lexicon that contains disambiguation symbols
- G, the LM, built from data/lm/G_n_gram.fst.txt
The generated HLG is saved in $lang_dir/HLG_fst.pt
So when to use this script instead of ./local/compile_hlg.py ?
If you have a very large G, ./local/compile_hlg.py may throw OOM for
determinization. In that case, you can use this script to compile HLG.
"""
import argparse
import logging
from pathlib import Path
import k2
import kaldifst
import torch
from icefall.lexicon import Lexicon
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lm",
type=str,
default="G_3_gram",
help="""Stem name for LM used in HLG compiling.
""",
)
parser.add_argument(
"--lang-dir",
type=str,
help="""Input and output directory.
""",
)
return parser.parse_args()
def compile_HLG(lang_dir: str, lm: str = "G_3_gram") -> kaldifst.StdVectorFst:
"""
Args:
lang_dir:
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
lm:
The language stem base name.
Return:
An FST representing HLG.
"""
L = kaldifst.StdVectorFst.read(f"{lang_dir}/L_disambig.fst")
logging.info("Arc sort L")
kaldifst.arcsort(L, sort_type="olabel")
logging.info(f"L: #states {L.num_states}")
G_filename_txt = f"data/lm/{lm}.fst.txt"
G_filename_binary = f"data/lm/{lm}.fst"
if Path(G_filename_binary).is_file():
logging.info(f"Loading {G_filename_binary}")
G = kaldifst.StdVectorFst.read(G_filename_binary)
else:
logging.info(f"Loading {G_filename_txt}")
with open(G_filename_txt) as f:
G = kaldifst.compile(s=f.read(), acceptor=False)
logging.info(f"Saving G to {G_filename_binary}")
G.write(G_filename_binary)
logging.info("Arc sort G")
kaldifst.arcsort(G, sort_type="ilabel")
logging.info(f"G: #states {G.num_states}")
logging.info("Compose L and G and connect LG")
LG = kaldifst.compose(L, G, connect=True)
logging.info(f"LG: #states {LG.num_states}")
logging.info("Determinizestar LG")
kaldifst.determinize_star(LG)
logging.info(f"LG after determinize_star: #states {LG.num_states}")
logging.info("Minimize encoded LG")
kaldifst.minimize_encoded(LG)
logging.info(f"LG after minimize_encoded: #states {LG.num_states}")
logging.info("Converting LG to k2 format")
LG = k2.Fsa.from_openfst(LG.to_str(is_acceptor=False), acceptor=False)
logging.info(f"LG in k2: #states: {LG.shape[0]}, #arcs: {LG.num_arcs}")
lexicon = Lexicon(lang_dir)
first_token_disambig_id = lexicon.token_table["#0"]
first_word_disambig_id = lexicon.word_table["#0"]
logging.info(f"token id for #0: {first_token_disambig_id}")
logging.info(f"word id for #0: {first_word_disambig_id}")
max_token_id = max(lexicon.tokens)
modified = False
logging.info(
f"Building ctc_topo. modified: {modified}, max_token_id: {max_token_id}"
)
H = k2.ctc_topo(max_token_id, modified=modified)
logging.info(f"H: #states: {H.shape[0]}, #arcs: {H.num_arcs}")
logging.info("Removing disambiguation symbols on LG")
LG.labels[LG.labels >= first_token_disambig_id] = 0
LG.aux_labels[LG.aux_labels >= first_word_disambig_id] = 0
# See https://github.com/k2-fsa/k2/issues/874
# for why we need to set LG.properties to None
LG.__dict__["_properties"] = None
logging.info("Removing epsilons from LG")
LG = k2.remove_epsilon(LG)
logging.info(
f"LG after k2.remove_epsilon: #states: {LG.shape[0]}, #arcs: {LG.num_arcs}"
)
logging.info("Connecting LG after removing epsilons")
LG = k2.connect(LG)
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
logging.info(f"LG after k2.connect: #states: {LG.shape[0]}, #arcs: {LG.num_arcs}")
logging.info("Arc sorting LG")
LG = k2.arc_sort(LG)
logging.info("Composing H and LG")
HLG = k2.compose(H, LG, inner_labels="tokens")
logging.info(
f"HLG after k2.compose: #states: {HLG.shape[0]}, #arcs: {HLG.num_arcs}"
)
logging.info("Connecting HLG")
HLG = k2.connect(HLG)
logging.info(
f"HLG after k2.connect: #states: {HLG.shape[0]}, #arcs: {HLG.num_arcs}"
)
logging.info("Arc sorting LG")
HLG = k2.arc_sort(HLG)
return HLG
def main():
args = get_args()
lang_dir = Path(args.lang_dir)
filename = lang_dir / "HLG_fst.pt"
if filename.is_file():
logging.info(f"{filename} already exists - skipping")
return
HLG = compile_HLG(lang_dir, args.lm)
logging.info(f"Saving HLG to {filename}")
torch.save(HLG.as_dict(), filename)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()