2022-11-17 09:42:17 -05:00

396 lines
12 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
./conformer_ctc/ali.py \
--exp-dir ./conformer_ctc/exp \
--lang-dir ./data/lang_bpe_500 \
--epoch 20 \
--avg 10 \
--max-duration 300 \
--dataset train-clean-100 \
--out-dir data/ali
"""
import argparse
import logging
from pathlib import Path
import k2
import numpy as np
import torch
from asr_datamodule import LibriSpeechAsrDataModule
from conformer import Conformer
from lhotse import CutSet
from lhotse.features.io import FeaturesWriter, NumpyHdf5Writer
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.decode import one_best_decoding
from icefall.env import get_env_info
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
encode_supervisions,
get_alignments,
setup_logger,
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=34,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=20,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_bpe_500",
help="The lang dir",
)
parser.add_argument(
"--exp-dir",
type=str,
default="conformer_ctc/exp",
help="The experiment dir",
)
parser.add_argument(
"--out-dir",
type=str,
required=True,
help="""Output directory.
It contains 3 generated files:
- labels_xxx.h5
- aux_labels_xxx.h5
- librispeech_cuts_xxx.jsonl.gz
where xxx is the value of `--dataset`. For instance, if
`--dataset` is `train-clean-100`, it will contain 3 files:
- `labels_train-clean-100.h5`
- `aux_labels_train-clean-100.h5`
- `librispeech_cuts_train-clean-100.jsonl.gz`
Note: Both labels_xxx.h5 and aux_labels_xxx.h5 contain framewise
alignment. The difference is that labels_xxx.h5 contains repeats.
""",
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="""The name of the dataset to compute alignments for.
Possible values are:
- test-clean.
- test-other
- train-clean-100
- train-clean-360
- train-other-500
- dev-clean
- dev-other
""",
)
return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
"lm_dir": Path("data/lm"),
"feature_dim": 80,
"nhead": 8,
"attention_dim": 512,
"subsampling_factor": 4,
# Set it to 0 since attention decoder
# is not used for computing alignments
"num_decoder_layers": 0,
"vgg_frontend": False,
"use_feat_batchnorm": True,
"output_beam": 10,
"use_double_scores": True,
"env_info": get_env_info(),
}
)
return params
def compute_alignments(
model: torch.nn.Module,
dl: torch.utils.data.DataLoader,
labels_writer: FeaturesWriter,
aux_labels_writer: FeaturesWriter,
params: AttributeDict,
graph_compiler: BpeCtcTrainingGraphCompiler,
) -> CutSet:
"""Compute the framewise alignments of a dataset.
Args:
model:
The neural network model.
dl:
Dataloader containing the dataset.
params:
Parameters for computing alignments.
graph_compiler:
It converts token IDs to decoding graphs.
Returns:
Return a CutSet. Each cut has two custom fields: labels_alignment
and aux_labels_alignment, containing framewise alignments information.
Both are of type `lhotse.array.TemporalArray`. The difference between
the two alignments is that `labels_alignment` contain repeats.
"""
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
num_cuts = 0
device = graph_compiler.device
cuts = []
for batch_idx, batch in enumerate(dl):
feature = batch["inputs"]
# at entry, feature is [N, T, C]
assert feature.ndim == 3
feature = feature.to(device)
supervisions = batch["supervisions"]
cut_list = supervisions["cut"]
for cut in cut_list:
assert len(cut.supervisions) == 1, f"{len(cut.supervisions)}"
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
# nnet_output is [N, T, C]
supervision_segments, texts = encode_supervisions(
supervisions, subsampling_factor=params.subsampling_factor
)
# we need also to sort cut_ids as encode_supervisions()
# reorders "texts".
# In general, new2old is an identity map since lhotse sorts the returned
# cuts by duration in descending order
new2old = supervision_segments[:, 0].tolist()
cut_list = [cut_list[i] for i in new2old]
token_ids = graph_compiler.texts_to_ids(texts)
decoding_graph = graph_compiler.compile(token_ids)
dense_fsa_vec = k2.DenseFsaVec(
nnet_output,
supervision_segments,
allow_truncate=params.subsampling_factor - 1,
)
lattice = k2.intersect_dense(
decoding_graph,
dense_fsa_vec,
params.output_beam,
)
best_path = one_best_decoding(
lattice=lattice,
use_double_scores=params.use_double_scores,
)
labels_ali = get_alignments(best_path, kind="labels")
aux_labels_ali = get_alignments(best_path, kind="aux_labels")
assert len(labels_ali) == len(aux_labels_ali) == len(cut_list)
for cut, labels, aux_labels in zip(cut_list, labels_ali, aux_labels_ali):
cut.labels_alignment = labels_writer.store_array(
key=cut.id,
value=np.asarray(labels, dtype=np.int32),
# frame shift is 0.01s, subsampling_factor is 4
frame_shift=0.04,
temporal_dim=0,
start=0,
)
cut.aux_labels_alignment = aux_labels_writer.store_array(
key=cut.id,
value=np.asarray(aux_labels, dtype=np.int32),
# frame shift is 0.01s, subsampling_factor is 4
frame_shift=0.04,
temporal_dim=0,
start=0,
)
cuts += cut_list
num_cuts += len(cut_list)
if batch_idx % 100 == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return CutSet.from_cuts(cuts)
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.enable_spec_aug = False
args.enable_musan = False
args.return_cuts = True
args.concatenate_cuts = False
params = get_params()
params.update(vars(args))
setup_logger(f"{params.exp_dir}/log-ali")
logging.info(f"Computing alignments for {params.dataset} - started")
logging.info(params)
out_dir = Path(params.out_dir)
out_dir.mkdir(exist_ok=True)
out_labels_ali_filename = out_dir / f"labels_{params.dataset}.h5"
out_aux_labels_ali_filename = out_dir / f"aux_labels_{params.dataset}.h5"
out_manifest_filename = out_dir / f"librispeech_cuts_{params.dataset}.jsonl.gz"
for f in (
out_labels_ali_filename,
out_aux_labels_ali_filename,
out_manifest_filename,
):
if f.exists():
logging.info(f"{f} exists - skipping")
return
lexicon = Lexicon(params.lang_dir)
max_token_id = max(lexicon.tokens)
num_classes = max_token_id + 1 # +1 for the blank
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
graph_compiler = BpeCtcTrainingGraphCompiler(
params.lang_dir,
device=device,
sos_token="<sos/eos>",
eos_token="<sos/eos>",
)
logging.info("About to create model")
model = Conformer(
num_features=params.feature_dim,
nhead=params.nhead,
d_model=params.attention_dim,
num_classes=num_classes,
subsampling_factor=params.subsampling_factor,
num_decoder_layers=params.num_decoder_layers,
vgg_frontend=params.vgg_frontend,
use_feat_batchnorm=params.use_feat_batchnorm,
)
model.to(device)
if params.avg == 1:
load_checkpoint(
f"{params.exp_dir}/epoch-{params.epoch}.pt", model, strict=False
)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.load_state_dict(
average_checkpoints(filenames, device=device), strict=False
)
model.eval()
librispeech = LibriSpeechAsrDataModule(args)
if params.dataset == "test-clean":
test_clean_cuts = librispeech.test_clean_cuts()
dl = librispeech.test_dataloaders(test_clean_cuts)
elif params.dataset == "test-other":
test_other_cuts = librispeech.test_other_cuts()
dl = librispeech.test_dataloaders(test_other_cuts)
elif params.dataset == "train-clean-100":
train_clean_100_cuts = librispeech.train_clean_100_cuts()
dl = librispeech.train_dataloaders(train_clean_100_cuts)
elif params.dataset == "train-clean-360":
train_clean_360_cuts = librispeech.train_clean_360_cuts()
dl = librispeech.train_dataloaders(train_clean_360_cuts)
elif params.dataset == "train-other-500":
train_other_500_cuts = librispeech.train_other_500_cuts()
dl = librispeech.train_dataloaders(train_other_500_cuts)
elif params.dataset == "dev-clean":
dev_clean_cuts = librispeech.dev_clean_cuts()
dl = librispeech.valid_dataloaders(dev_clean_cuts)
else:
assert params.dataset == "dev-other", f"{params.dataset}"
dev_other_cuts = librispeech.dev_other_cuts()
dl = librispeech.valid_dataloaders(dev_other_cuts)
logging.info(f"Processing {params.dataset}")
with NumpyHdf5Writer(out_labels_ali_filename) as labels_writer:
with NumpyHdf5Writer(out_aux_labels_ali_filename) as aux_labels_writer:
cut_set = compute_alignments(
model=model,
dl=dl,
labels_writer=labels_writer,
aux_labels_writer=aux_labels_writer,
params=params,
graph_compiler=graph_compiler,
)
cut_set.to_file(out_manifest_filename)
logging.info(
f"For dataset {params.dataset}, its alignments with repeats are "
f"saved to {out_labels_ali_filename}, the alignments without repeats "
f"are saved to {out_aux_labels_ali_filename}, and the cut manifest "
f"file is {out_manifest_filename}. Number of cuts: {len(cut_set)}"
)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__":
main()