2025-07-10 15:27:08 +08:00

361 lines
10 KiB
Python

#!/usr/bin/env python3
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads a checkpoint (`pretrained.pt`) and uses it to decode waves.
You can generate the checkpoint with the following command:
./zipformer/export_PromptASR.py \
--exp-dir ./zipformer/exp \
--tokens data/lang_bpe_500_fallback_coverage_0.99/tokens.txt \
--epoch 50 \
--avg 10
Utterance level context biasing:
./zipformer/pretrained.py \
--checkpoint ./zipformer/exp/pretrained.pt \
--tokens data/lang_bpe_500_fallback_coverage_0.99/tokens.txt \
--method modified_beam_search \
--use-pre-text True \
--content-prompt "bessy random words hello k2 ASR" \
--use-style-prompt True \
librispeech.flac
Word level context biasing:
./zipformer/pretrained.py \
--checkpoint ./zipformer/exp/pretrained.pt \
--tokens data/lang_bpe_500_fallback_coverage_0.99/tokens.txt \
--method modified_beam_search \
--use-pre-text True \
--content-prompt "The topic is about horses." \
--use-style-prompt True \
test.wav
"""
import argparse
import logging
import math
import warnings
from typing import List
import k2
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from beam_search import greedy_search_batch, modified_beam_search
from text_normalization import _apply_style_transform, train_text_normalization
from torch.nn.utils.rnn import pad_sequence
from train_bert_encoder import (
_encode_texts_as_bytes_with_tokenizer,
add_model_arguments,
get_params,
get_tokenizer,
get_transducer_model,
)
from icefall.utils import make_pad_mask, num_tokens, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint. "
"The checkpoint is assumed to be saved by "
"icefall.checkpoint.save_checkpoint().",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500_fallback_coverage_0.99/bpe.model",
help="""Path to tokens.txt.""",
)
parser.add_argument(
"--method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- modified_beam_search
- fast_beam_search
""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame. Used only when
--method is greedy_search.
""",
)
parser.add_argument(
"--use-pre-text",
type=str2bool,
default=True,
help="Use content prompt during decoding",
)
parser.add_argument(
"--use-style-prompt",
type=str2bool,
default=True,
help="Use style prompt during decoding",
)
parser.add_argument(
"--pre-text-transform",
type=str,
choices=["mixed-punc", "upper-no-punc", "lower-no-punc", "lower-punc"],
default="mixed-punc",
help="The style of content prompt, i.e pre_text",
)
parser.add_argument(
"--style-text-transform",
type=str,
choices=["mixed-punc", "upper-no-punc", "lower-no-punc", "lower-punc"],
default="mixed-punc",
help="The style of style prompt, i.e style_text",
)
parser.add_argument(
"--content-prompt", type=str, default="", help="The content prompt for decoding"
)
parser.add_argument(
"--style-prompt",
type=str,
default="Mixed-cased English text with punctuations, feel free to change it.",
help="The style prompt for decoding",
)
add_model_arguments(parser)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0].contiguous())
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
params.update(vars(args))
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
logging.info(f"{params}")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
if params.causal:
assert (
"," not in params.chunk_size
), "chunk_size should be one value in decoding."
assert (
"," not in params.left_context_frames
), "left_context_frames should be one value in decoding."
logging.info("Creating model")
model = get_transducer_model(params)
tokenizer = get_tokenizer(params) # for text encoder
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = params.sample_rate
opts.mel_opts.num_bins = params.feature_dim
opts.mel_opts.high_freq = -400
fbank = kaldifeat.Fbank(opts)
assert (
len(params.sound_files) == 1
), "Only support decoding one audio at this moment"
logging.info(f"Reading sound files: {params.sound_files}")
waves = read_sound_files(
filenames=params.sound_files, expected_sample_rate=params.sample_rate
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
feature_lengths = torch.tensor(feature_lengths, device=device)
# encode prompts
if params.use_pre_text:
pre_text = [train_text_normalization(params.content_prompt)]
pre_text = _apply_style_transform(pre_text, params.pre_text_transform)
else:
pre_text = [""]
if params.use_style_prompt:
style_text = [params.style_prompt]
style_text = _apply_style_transform(style_text, params.style_text_transform)
else:
style_text = [""]
if params.use_pre_text or params.use_style_prompt:
encoded_inputs, style_lens = _encode_texts_as_bytes_with_tokenizer(
pre_texts=pre_text,
style_texts=style_text,
tokenizer=tokenizer,
device=device,
no_limit=True,
)
memory, memory_key_padding_mask = model.encode_text(
encoded_inputs=encoded_inputs,
style_lens=style_lens,
) # (T,B,C)
else:
memory = None
memory_key_padding_mask = None
with warnings.catch_warnings():
warnings.simplefilter("ignore")
encoder_out, encoder_out_lens = model.encode_audio(
feature=features,
feature_lens=feature_lengths,
memory=memory,
memory_key_padding_mask=memory_key_padding_mask,
)
hyps = []
msg = f"Using {params.method}"
logging.info(msg)
if params.method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
hyps.append(sp.decode(hyp_tokens)[0])
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
hyps.append(sp.decode(hyp_tokens)[0])
else:
raise ValueError(f"Unsupported method: {params.method}")
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
s += f"{filename}:\n{hyp}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()