mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* merge upstream * add SURT model and training * add libricss decoding * add chunk width randomization * decode SURT with libricss * initial commit for zipformer_ctc * remove unwanted changes * remove changes to other recipe * fix zipformer softlink * fix for JIT export * add missing file * fix symbolic links * update results * clean commit for SURT recipe * training libricss surt model * remove unwanted files * remove unwanted changes * remove changes in librispeech * change some files to symlinks * remove unwanted changes in utils * add export script * add README * minor fix in README * add assets for README * replace some files with symlinks * remove unused decoding methods * fix symlink * address comments from @csukuangfj
189 lines
6.4 KiB
Python
Executable File
189 lines
6.4 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2022 Johns Hopkins University (authors: Desh Raj)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
"""
|
|
This file computes fbank features of the synthetically mixed LibriSpeech
|
|
train and dev sets.
|
|
It looks for manifests in the directory data/manifests.
|
|
|
|
The generated fbank features are saved in data/fbank.
|
|
"""
|
|
import logging
|
|
import random
|
|
import warnings
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
import torch.multiprocessing
|
|
from lhotse import LilcomChunkyWriter, load_manifest
|
|
from lhotse.cut import MixedCut, MixTrack, MultiCut
|
|
from lhotse.features.kaldifeat import (
|
|
KaldifeatFbank,
|
|
KaldifeatFbankConfig,
|
|
KaldifeatFrameOptions,
|
|
KaldifeatMelOptions,
|
|
)
|
|
from lhotse.recipes.utils import read_manifests_if_cached
|
|
from lhotse.utils import fix_random_seed, uuid4
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
torch.multiprocessing.set_sharing_strategy("file_system")
|
|
|
|
|
|
def compute_fbank_lsmix():
|
|
src_dir = Path("data/manifests")
|
|
output_dir = Path("data/fbank")
|
|
|
|
sampling_rate = 16000
|
|
num_mel_bins = 80
|
|
|
|
extractor = KaldifeatFbank(
|
|
KaldifeatFbankConfig(
|
|
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
|
|
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
|
|
device="cuda",
|
|
)
|
|
)
|
|
|
|
logging.info("Reading manifests")
|
|
manifests = read_manifests_if_cached(
|
|
dataset_parts=["train_clean_full", "train_clean_ov40"],
|
|
types=["cuts"],
|
|
output_dir=src_dir,
|
|
prefix="lsmix",
|
|
suffix="jsonl.gz",
|
|
lazy=True,
|
|
)
|
|
|
|
cs = {}
|
|
cs["clean_full"] = manifests["train_clean_full"]["cuts"]
|
|
cs["clean_ov40"] = manifests["train_clean_ov40"]["cuts"]
|
|
|
|
# only uses RIRs and noises from REVERB challenge
|
|
real_rirs = load_manifest(src_dir / "real-rir_recordings_all.jsonl.gz").filter(
|
|
lambda r: "RVB2014" in r.id
|
|
)
|
|
noises = load_manifest(src_dir / "iso-noise_recordings_all.jsonl.gz").filter(
|
|
lambda r: "RVB2014" in r.id
|
|
)
|
|
|
|
# Apply perturbation to the training cuts
|
|
logging.info("Applying perturbation to the training cuts")
|
|
cs["rvb_full"] = cs["clean_full"].map(
|
|
lambda c: augment(
|
|
c, perturb_snr=True, rirs=real_rirs, noises=noises, perturb_loudness=True
|
|
)
|
|
)
|
|
cs["rvb_ov40"] = cs["clean_ov40"].map(
|
|
lambda c: augment(
|
|
c, perturb_snr=True, rirs=real_rirs, noises=noises, perturb_loudness=True
|
|
)
|
|
)
|
|
|
|
for type_affix in ["full", "ov40"]:
|
|
for rvb_affix in ["clean", "rvb"]:
|
|
logging.info(
|
|
f"Extracting fbank features for {type_affix} {rvb_affix} training cuts"
|
|
)
|
|
cuts = cs[f"{rvb_affix}_{type_affix}"]
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
_ = cuts.compute_and_store_features_batch(
|
|
extractor=extractor,
|
|
storage_path=output_dir
|
|
/ f"lsmix_feats_train_{rvb_affix}_{type_affix}",
|
|
manifest_path=src_dir
|
|
/ f"cuts_train_{rvb_affix}_{type_affix}.jsonl.gz",
|
|
batch_duration=5000,
|
|
num_workers=4,
|
|
storage_type=LilcomChunkyWriter,
|
|
overwrite=True,
|
|
)
|
|
|
|
|
|
def augment(cut, perturb_snr=False, rirs=None, noises=None, perturb_loudness=False):
|
|
"""
|
|
Given a mixed cut, this function optionally applies the following augmentations:
|
|
- Perturbing the SNRs of the tracks (in range [-5, 5] dB)
|
|
- Reverberation using a randomly selected RIR
|
|
- Adding noise
|
|
- Perturbing the loudness (in range [-20, -25] dB)
|
|
"""
|
|
out_cut = cut.drop_features()
|
|
|
|
# Perturb the SNRs (optional)
|
|
if perturb_snr:
|
|
snrs = [random.uniform(-5, 5) for _ in range(len(cut.tracks))]
|
|
for i, (track, snr) in enumerate(zip(out_cut.tracks, snrs)):
|
|
if i == 0:
|
|
# Skip the first track since it is the reference
|
|
continue
|
|
track.snr = snr
|
|
|
|
# Reverberate the cut (optional)
|
|
if rirs is not None:
|
|
# Select an RIR at random
|
|
rir = random.choice(rirs)
|
|
# Select a channel at random
|
|
rir_channel = random.choice(list(range(rir.num_channels)))
|
|
# Reverberate the cut
|
|
out_cut = out_cut.reverb_rir(rir_recording=rir, rir_channels=[rir_channel])
|
|
|
|
# Add noise (optional)
|
|
if noises is not None:
|
|
# Select a noise recording at random
|
|
noise = random.choice(noises).to_cut()
|
|
if isinstance(noise, MultiCut):
|
|
noise = noise.to_mono()[0]
|
|
# Select an SNR at random
|
|
snr = random.uniform(10, 30)
|
|
# Repeat the noise to match the duration of the cut
|
|
noise = repeat_cut(noise, out_cut.duration)
|
|
out_cut = MixedCut(
|
|
id=out_cut.id,
|
|
tracks=[
|
|
MixTrack(cut=out_cut, type="MixedCut"),
|
|
MixTrack(cut=noise, type="DataCut", snr=snr),
|
|
],
|
|
)
|
|
|
|
# Perturb the loudness (optional)
|
|
if perturb_loudness:
|
|
target_loudness = random.uniform(-20, -25)
|
|
out_cut = out_cut.normalize_loudness(target_loudness, mix_first=True)
|
|
return out_cut
|
|
|
|
|
|
def repeat_cut(cut, duration):
|
|
while cut.duration < duration:
|
|
cut = cut.mix(cut, offset_other_by=cut.duration)
|
|
return cut.truncate(duration=duration)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
fix_random_seed(42)
|
|
compute_fbank_lsmix()
|