icefall/egs/ami/SURT/prepare.sh
Desh Raj 41b16d7838
SURT recipe for AMI and ICSI (#1133)
* merge upstream

* add SURT model and training

* add libricss decoding

* add chunk width randomization

* decode SURT with libricss

* initial commit for zipformer_ctc

* remove unwanted changes

* remove changes to other recipe

* fix zipformer softlink

* fix for JIT export

* add missing file

* fix symbolic links

* update results

* clean commit for SURT recipe

* training libricss surt model

* remove unwanted files

* remove unwanted changes

* remove changes in librispeech

* change some files to symlinks

* remove unwanted changes in utils

* add export script

* add README

* minor fix in README

* add assets for README

* replace some files with symlinks

* remove unused decoding methods

* initial commit for SURT AMI recipe

* fix symlink

* add train + decode scripts

* add missing symlink

* change files to symlink

* change file type
2023-07-08 23:01:51 +08:00

196 lines
6.2 KiB
Bash
Executable File

#!/usr/bin/env bash
set -eou pipefail
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/ami
# You can find audio and transcripts for AMI in this path.
#
# - $dl_dir/icsi
# You can find audio and transcripts for ICSI in this path.
#
# - $dl_dir/rirs_noises
# This directory contains the RIRS_NOISES corpus downloaded from https://openslr.org/28/.
#
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
vocab_size=500
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/amicorpus,
# you can create a symlink
#
# ln -sfv /path/to/amicorpus $dl_dir/amicorpus
#
if [ ! -d $dl_dir/amicorpus ]; then
for mic in ihm ihm-mix sdm mdm8-bf; do
lhotse download ami --mic $mic $dl_dir/amicorpus
done
fi
# If you have pre-downloaded it to /path/to/icsi,
# you can create a symlink
#
# ln -sfv /path/to/icsi $dl_dir/icsi
#
if [ ! -d $dl_dir/icsi ]; then
lhotse download icsi $dl_dir/icsi
fi
# If you have pre-downloaded it to /path/to/rirs_noises,
# you can create a symlink
#
# ln -sfv /path/to/rirs_noises $dl_dir/
#
if [ ! -d $dl_dir/rirs_noises ]; then
lhotse download rirs_noises $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare AMI manifests"
# We assume that you have downloaded the AMI corpus
# to $dl_dir/amicorpus. We perform text normalization for the transcripts.
mkdir -p data/manifests
for mic in ihm ihm-mix sdm mdm8-bf; do
log "Preparing AMI manifest for $mic"
lhotse prepare ami --mic $mic --max-words-per-segment 30 --merge-consecutive $dl_dir/amicorpus data/manifests/
done
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare ICSI manifests"
# We assume that you have downloaded the ICSI corpus
# to $dl_dir/icsi. We perform text normalization for the transcripts.
mkdir -p data/manifests
log "Preparing ICSI manifest"
for mic in ihm ihm-mix sdm; do
lhotse prepare icsi --mic $mic $dl_dir/icsi data/manifests/
done
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare RIRs"
# We assume that you have downloaded the RIRS_NOISES corpus
# to $dl_dir/rirs_noises
lhotse prepare rir-noise -p real_rir -p iso_noise $dl_dir/rirs_noises data/manifests
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 3: Extract features for AMI and ICSI recordings"
python local/compute_fbank_ami.py
python local/compute_fbank_icsi.py
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Create sources for simulating mixtures"
# In the following script, we speed-perturb the IHM recordings and extract features.
python local/compute_fbank_ihm.py
lhotse combine data/manifests/ami-ihm_cuts_train.jsonl.gz \
data/manifests/icsi-ihm_cuts_train.jsonl.gz - |\
lhotse cut trim-to-alignments --type word --max-pause 0.5 - - |\
lhotse filter 'duration<=12.0' - - |\
shuf | gzip -c > data/manifests/ihm_cuts_train_trimmed.jsonl.gz
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Create training mixtures"
lhotse workflows simulate-meetings \
--method conversational \
--same-spk-pause 0.5 \
--diff-spk-pause 0.5 \
--diff-spk-overlap 1.0 \
--prob-diff-spk-overlap 0.8 \
--num-meetings 200000 \
--num-speakers-per-meeting 2,3 \
--max-duration-per-speaker 15.0 \
--max-utterances-per-speaker 3 \
--seed 1234 \
--num-jobs 2 \
data/manifests/ihm_cuts_train_trimmed.jsonl.gz \
data/manifests/ai-mix_cuts_clean.jsonl.gz
python local/compute_fbank_aimix.py
# Add source features to the manifest (will be used for masking loss)
# This may take ~2 hours.
python local/add_source_feats.py
# Combine clean and reverb
cat <(gunzip -c data/manifests/cuts_train_clean_sources.jsonl.gz) \
<(gunzip -c data/manifests/cuts_train_reverb_sources.jsonl.gz) |\
shuf | gzip -c > data/manifests/cuts_train_comb_sources.jsonl.gz
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Create training mixtures from real sessions"
python local/prepare_ami_train_cuts.py
python local/prepare_icsi_train_cuts.py
# Combine AMI and ICSI
cat <(gunzip -c data/manifests/cuts_train_ami.jsonl.gz) \
<(gunzip -c data/manifests/cuts_train_icsi.jsonl.gz) |\
shuf | gzip -c > data/manifests/cuts_train_ami_icsi.jsonl.gz
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Dump transcripts for BPE model training (using AMI and ICSI)."
mkdir -p data/lm
cat <(gunzip -c data/manifests/ami-sdm_supervisions_train.jsonl.gz | jq '.text' | sed 's:"::g') \
<(gunzip -c data/manifests/icsi-sdm_supervisions_train.jsonl.gz | jq '.text' | sed 's:"::g') \
> data/lm/transcript_words.txt
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Prepare BPE based lang (combining AMI and ICSI)"
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
# Add special words to words.txt
echo "<eps> 0" > $lang_dir/words.txt
echo "!SIL 1" >> $lang_dir/words.txt
echo "<UNK> 2" >> $lang_dir/words.txt
# Add regular words to words.txt
cat data/lm/transcript_words.txt | grep -o -E '\w+' | sort -u | awk '{print $0,NR+2}' >> $lang_dir/words.txt
# Add remaining special word symbols expected by LM scripts.
num_words=$(cat $lang_dir/words.txt | wc -l)
echo "<s> ${num_words}" >> $lang_dir/words.txt
num_words=$(cat $lang_dir/words.txt | wc -l)
echo "</s> ${num_words}" >> $lang_dir/words.txt
num_words=$(cat $lang_dir/words.txt | wc -l)
echo "#0 ${num_words}" >> $lang_dir/words.txt
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript data/lm/transcript_words.txt
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
fi
fi