icefall/egs/librispeech/ASR/prepare_vox.sh
2023-03-13 15:55:55 +09:00

167 lines
4.4 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
#. ../../../tools/activate_python.sh
set -eou pipefail
nj=15
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/LJSpeech
# You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it.
# You can download them from https://www.openslr.org/12
#
# - $dl_dir/lm
# This directory contains the following files downloaded from
# http://www.openslr.org/resources/11
#
# - 3-gram.pruned.1e-7.arpa.gz
# - 3-gram.pruned.1e-7.arpa
# - 4-gram.arpa.gz
# - 4-gram.arpa
# - LJSpeech-vocab.txt
# - LJSpeech-lexicon.txt
# - LJSpeech-lm-norm.txt.gz
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=/DB/LibriSpeech_tar/vox
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
5000
2000
1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare LJSpeech manifest"
# We assume that you have downloaded the LJSpeech corpus (ver 1.1)
# You need to prepare LJSpeech according to data_settings/*_list.txt like below
# $dl_dir/LJSpeech
# |-- wavs
# | |-- train
# | |-- dev
# | |-- test
# |-- texts
# |-- metadata.csv
# to $dl_dir/LJSpeech
if [ ! -e $dl_dir/vox/.vox.done ]; then
#for dset in "4446"; do
# log "Resampling vox/$dset set"
# file_list=`ls $dl_dir/vox/$dset/`
# for wavfile in $file_list; do
# echo $wavfile
# sox -v 0.9 $dl_dir/vox/$dset/$wavfile -r 16000 -e signed-integer $dl_dir/vox/$dset/tmp_$wavfile
# mv $dl_dir/vox/$dset/tmp_$wavfile $dl_dir/vox/$dset/$wavfile
# done
# log "Resampling $dset done"
#done
for dest in "test-clean" "test-other"; do
for spk in $dl_dir/$dest/*; do
echo $spk
spk_id=${spk#*$dest\/}
python local/prepare_vox_text.py $spk $spk_id
done
done
#touch $dl_dir/vox/.vox.done
fi
mkdir -p data/manifests
if [ ! -e data/manifests/.vox.done ]; then
for dest in "test-clean" "test-other"; do
for spk in $dl_dir/$dest/*; do
spk_id=${spk#*$dest\/}
python local/prepare_vox.py $dl_dir/$dest "$spk_id"
done
done
#touch data/manifests/.vox.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for Vox"
mkdir -p data/fbank
if [ ! -e data/fbank/.LJSpeech.done ]; then
for dest in "test-clean" "test-other"; do
for spk in $dl_dir/$dest/*; do
spk_id=${spk#*$dest\/}
./local/compute_fbank_vox.py --data-dir $spk --spk-id $spk_id
done
done
#touch data/fbank/.vox.done
fi
#if [ ! -e data/fbank/.LJSpeech-validated.done ]; then
# log "Validating data/fbank for LJSpeech"
# parts=`ls $dl_dir/LJSpeech/wavs/`
# for part in ${parts[@]}; do
# python3 ./local/validate_manifest.py \
# data/fbank/LJSpeech_cuts_${part}.jsonl.gz
# done
#fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
#touch data/fbank/.musan.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Generate pseudo label"
rm -rf $dl_dir/*_texts
for dest in "test-clean" "test-other"; do
for spk in $dl_dir/$dest/*; do
spk_id=${spk#*$dest\/}
./pseudo.sh $spk_id
#python local/prepare_vox.py $dl_dir/$dest "$spk_id"
done
done
fi